【題目】某種產(chǎn)品的廣告費(fèi)支出與銷售額 (單位:萬(wàn)元)具有較強(qiáng)的相關(guān)性,且兩者之間有如下對(duì)應(yīng)數(shù)據(jù):

2

4

5

6

8

28

36

52

56

78

(1)求關(guān)于的線性回歸方程;

(2)根據(jù)(1)中的線性回歸方程,當(dāng)廣告費(fèi)支出為10萬(wàn)元時(shí),預(yù)測(cè)銷售額是多少?

參考數(shù)據(jù): ,。

附:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

,.

【答案】(1)(2)當(dāng)廣告費(fèi)支出為10萬(wàn)元時(shí),預(yù)測(cè)銷售額大約為.

【解析】

(1)利用公式和題目中的數(shù)據(jù),先求樣本中心,代入方程直接求解。

(2)根據(jù)第一問(wèn)的方程,當(dāng)時(shí)代入求解。

:(1)

,

因此所求回歸直線方程為

(法二:利用前半個(gè)公式求解相應(yīng)給分)

(2)當(dāng)時(shí),

答:當(dāng)廣告費(fèi)支出為10萬(wàn)元時(shí),預(yù)測(cè)銷售額大約為.

【說(shuō)明:沒(méi)有答題和估計(jì)的扣兩分】

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小學(xué)四年級(jí)男同學(xué)有45名,女同學(xué)有30名,老師按照分層抽樣的方法組建了一個(gè)5人的課外興趣小組.

(Ⅰ)求某同學(xué)被抽到的概率及課外興趣小組中男、女同學(xué)的人數(shù);

(Ⅱ)經(jīng)過(guò)一個(gè)月的學(xué)習(xí)、討論,這個(gè)興趣小組決定選出兩名同學(xué)做某項(xiàng)實(shí)驗(yàn),方法是先從小組里選出1名同學(xué)做實(shí)驗(yàn),該同學(xué)做完后,再?gòu)男〗M內(nèi)剩下的同學(xué)中選一名同學(xué)做實(shí)驗(yàn),求選出的兩名同學(xué)中恰有一名女同學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的右焦點(diǎn)為F,過(guò)橢圓C中心的弦PQ長(zhǎng)為2,且∠PFQ=90°,△PQF的面積為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A1、A2分別為橢圓C的左、右頂點(diǎn),S為直線 上一動(dòng)點(diǎn),直線A1S交橢圓C于點(diǎn)M,直線A2S交橢圓于點(diǎn)N,設(shè)S1、S2分別為△A1SA2、△MSN的面積,求 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某射手平時(shí)射擊成績(jī)統(tǒng)計(jì)如表:

環(huán)數(shù)

7環(huán)以下

7

8

9

10

概率

a

b

已知他射中7環(huán)及7環(huán)以下的概率為

ab的值;

求命中10環(huán)或9環(huán)的概率;

求命中環(huán)數(shù)不足9環(huán)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某旅游愛(ài)好者計(jì)劃從3個(gè)亞洲國(guó)家和3個(gè)歐洲國(guó)家中選擇2個(gè)國(guó)家去旅游.

(Ⅰ)若從這6個(gè)國(guó)家中任選2個(gè),求這2個(gè)國(guó)家都是亞洲國(guó)家的概率;

(Ⅱ)若從亞洲國(guó)家和歐洲國(guó)家中各任選1個(gè),求這2個(gè)國(guó)家包括但不包括的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)拋物線的焦點(diǎn),斜率為的直線交拋物線于 兩點(diǎn),且.

1求該拋物線的方程;

2過(guò)點(diǎn)任意作互相垂直的兩條直線,分別交曲線于點(diǎn).設(shè)線段的中點(diǎn)分別為,求證:直線恒過(guò)一個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一袋中裝有10個(gè)大小相同的黑球和白球.已知從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是.

(1)求白球的個(gè)數(shù);

(2)從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為,求隨機(jī)變量的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)滿足2x2f(x)+x3f′(x)=ex , f(2)= ,則x∈[2,+∞)時(shí),f(x)(
A.有最大值
B.有最小值
C.有最大值
D.有最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}滿足a1=,.(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)cn=(3n+1)an,證明:數(shù)列{cn}中任意三項(xiàng)不可能構(gòu)成等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案