15.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=2an-$\frac{1}{2}$.
(1)證明;數(shù)列{an}是等比數(shù)列;
(2)設(shè)bn=log2a2n+1,求數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項(xiàng)和Tn

分析 (1)通過(guò)Sn=2an-$\frac{1}{2}$與Sn-1=2an-1-$\frac{1}{2}$(n≥2)作差,進(jìn)而整理即得結(jié)論;
(2)通過(guò)(1)可知an=2n-2,進(jìn)而可知bn=2n-1,裂項(xiàng)可知$\frac{1}{_{n}_{n+1}}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),進(jìn)而并項(xiàng)相加即得結(jié)論.

解答 (1)證明:∵Sn=2an-$\frac{1}{2}$,
∴Sn-1=2an-1-$\frac{1}{2}$(n≥2),
兩式相減得:an=2an-2an-1,即an=2an-1,
又∵a1=2a1-$\frac{1}{2}$,即a1=$\frac{1}{2}$,
∴數(shù)列{an}是首項(xiàng)為$\frac{1}{2}$、公比為2的等比數(shù)列;
(2)解:由(1)可知an=$\frac{1}{2}$•2n-1=2n-2,
∵bn=log2a2n+1=log222n-1=2n-1,
∴$\frac{1}{_{n}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴Tn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查運(yùn)算求解能力,考查裂項(xiàng)相消法,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.曲線y=2ex+x2在點(diǎn)(0,2)處的切線方程為y=2x+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.給定min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,b<a}\end{array}\right.$,已知函數(shù)f(x)=min{x,x2-4x+4}+4,若動(dòng)直線y=m與函數(shù)y=f(x)的圖象有3個(gè)交點(diǎn),它們的橫坐標(biāo)分別為x1,x2,x3,則x1+x2+x3的范圍為(4,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在設(shè)計(jì)求解一元一次方程ax+b=0(a,b為常數(shù))的算法時(shí),需要用條件語(yǔ)句判斷a≠0?.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.甲、乙、丙3名教師安排在10月1日至5日的5天中值班,要求每人值班一天且每天至多安排一人.其中甲不在10月1日值班且丙不在10月5日值班,則不同的安排方法有( 。┓N.
A.36B.39C.42D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn,an,$\frac{1}{2}$成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若bn=log2an+3,求數(shù)列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=2sinx•sin($\frac{π}{3}$-x).
(1)求函數(shù)f(x)的對(duì)稱軸方程;
(2)如果0≤x≤$\frac{π}{2}$,求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知指數(shù)函數(shù)y=g(x)滿足:g($\frac{1}{2}$)=$\sqrt{2}$,定義域?yàn)镽的函數(shù)f(x)=$\frac{1-g(x)}{m+2g(x)}$是奇函數(shù).
(1)確定y=f(x)和y=g(x)的解析式;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明;
(3)若對(duì)于任意x∈[-5,5],都有f(1-x)+f(1-2x)>0成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.a(chǎn)、b、c、d、e是從集合{1,2,3,4,5}中任取的5個(gè)元素(不允許重復(fù)),則abc+de為奇數(shù)的概率為( 。
A.$\frac{4}{15}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案