已知函數(shù)y=
m
x
和y=nx+b在(-∞,0)上都是增函數(shù),則函數(shù)y=mx2+nx在(-∞,0)上( 。
分析:利用反比例函數(shù)、一次函數(shù)的單調(diào)性的條件得到m<0,n>0;函數(shù)y=mx2+nx的圖象的開口向下,其對稱軸x=-
n
2m
>0,進(jìn)一步確定出函數(shù)y=mx2+nx在(-∞,0)上的單調(diào)性.
解答:解:因為函數(shù)y=
m
x
和y=nx+b在(-∞,0)上都是增函數(shù),
所以m<0,n>0;
所以函數(shù)y=mx2+nx的圖象的開口向下,
其對稱軸x=-
n
2m
>0,
所以函數(shù)y=mx2+nx在(-∞,0)上是增函數(shù).
故選A.
點(diǎn)評:本題考查二次函數(shù)的單調(diào)性取決于二次函數(shù)的二次項系數(shù)的符號、對稱軸與區(qū)間的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c在x=0和x=2處取得極值,且函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)(1,0).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)A、B為函數(shù)y=f(x)圖象上任意相異的兩個點(diǎn),試判定直線AB和直線4x+y-3=0的位置關(guān)系并說明理由;
(3)設(shè)函數(shù)g(x)=x2+mx+6,若對任意t∈[-2,2]且x∈[-2,2],f(t)≤g(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•泰安一模)已知函數(shù)f(x)=(ax2+x+1)ex
(1)若曲線y=f(x)在x=1處的切線與x軸平行,求a的值,并討論f(x)的單調(diào)性;
(2)當(dāng)a=0時,是否存在實數(shù)m使不等式mx+1≥-x2+4x+1和2f(x)≥mx+1對任意x∈[0,+∞)恒成立?若存在,求出m的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x3+ax2+bx+c在x=0和x=2處取得極值,且函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)(1,0).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)A、B為函數(shù)y=f(x)圖象上任意相異的兩個點(diǎn),試判定直線AB和直線4x+y-3=0的位置關(guān)系并說明理由;
(3)設(shè)函數(shù)g(x)=x2+mx+6,若對任意t∈[-2,2]且x∈[-2,2],f(t)≤g(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3+ax2+bx+c在x=0和x=2處取得極值,且函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)(1,0).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)A、B為函數(shù)y=f(x)圖象上任意相異的兩個點(diǎn),試判定直線AB和直線4x+y-3=0的位置關(guān)系并說明理由;
(3)設(shè)函數(shù)g(x)=x2+mx+6,若對任意t∈[-2,2]且x∈[-2,2],f(t)≤g(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案