14.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(-1,2),若m$\overrightarrow{a}$+4$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$共線,m=-2.

分析 利用向量坐標(biāo)運(yùn)算性質(zhì)、向量共線定理即可得出.

解答 解:m$\overrightarrow{a}$+4$\overrightarrow$=(2m-4,3m+8),$\overrightarrow{a}$-2$\overrightarrow$=(4,-1),
∵m$\overrightarrow{a}$+4$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$共線,
∴4(3m+8)+(2m-4)=0,
解得m=-2.
故答案為:-2.

點(diǎn)評(píng) 本題考查了向量坐標(biāo)運(yùn)算性質(zhì)、向量共線定理,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.等差數(shù)列{an}的公差d=-1,a1=2,則a6=( 。
A.-3B.3C.1D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.直線y=2x與拋物線y=3-x2圍成的封閉圖形的面積是$\frac{32}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,x軸被曲線C2:y=x2-b截得的線段長(zhǎng)等于C1的長(zhǎng)半軸長(zhǎng).C2與y軸的交點(diǎn)為M,過坐標(biāo)原點(diǎn)O的直線l與C2相交于點(diǎn)A,B,兩直線MA,MB分別與C1相交于點(diǎn)D,E.
①曲線C1,C2的方程分別為$\frac{{x}^{2}}{4}$+y2=1,y=x2-1;
②MD⊥ME;
③若橢圓C1的左右頂點(diǎn)分別為P、Q兩點(diǎn),則kDP•kDQ=-$\frac{1}{4}$;
④記△MAB,△MDE的面積分別為S1,S2,則$\frac{{S}_{1}}{{S}_{2}}$的最大值為$\frac{25}{64}$.
以上列說法正確的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知復(fù)數(shù)z=$\frac{(-1+3i)(1-i)-(1+3i)}{i}$,ω=z+ai(a∈R),當(dāng)|$\frac{ω}{z}$|≤$\sqrt{2}$時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}滿足a1=1,a2=4,an+2+2an=3an+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)記數(shù)列{an}的前n項(xiàng)和Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,點(diǎn)A、B分別是角α、β的終邊與單位圓的交點(diǎn),0<β<$\frac{π}{2}$<α<π
(I)證明:cos(α-β)=cosαcosβ+sinαsinβ;
(II)若α=$\frac{3π}{4}$,cos(α-β)=$\frac{2}{3}$,求sin2β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.計(jì)算log327+lg25+lg4+7${\;}^{{{log}_7}2}}$的結(jié)果為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知命題:“?x∈{x|-1<x<1},使等式x2-x-m=0成立”是真命題,求實(shí)數(shù)m的取值集合M.

查看答案和解析>>

同步練習(xí)冊(cè)答案