如圖,在底面ABCD為平行四邊形的四棱柱ABCD-A1B1C1D1中,M是AC與BD的交點(diǎn),若
AB
=
a
,
AD
=
b
,
AA1
=
c
,則下列向量中與
B1M
相等的向量是(  )
A.-
1
2
a
+
1
2
b
+
c
B.
1
2
a
+
1
2
b
+
c
C.-
1
2
a
+
1
2
b
-
c
D.-
1
2
a
-
1
2
b
+
c

BD
=
AD
-
AB
=
b
-
a
,
BM
=
1
2
BD
,
BM
=
1
2
b
-
1
2
a

B1B
=
A1A
=-
c
,
B1M
=-
c
+
1
2
b
-
1
2
a

故選:C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)A(1,0)、B(0,2)、C(-1,-2),求以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在平行六面體ABCD-A1B1C1D1中,O為AC的中點(diǎn).
(1)化簡(jiǎn):
A1O
-
1
2
AB
-
1
2
AD

(2)設(shè)E是棱DD1上的點(diǎn),且
DE
=
2
3
DD1
,若
EO
=x
AB
+y
AD
+z
AA1
,試求實(shí)數(shù)x,y,z的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知斜三棱柱ABC-A′B′C′,設(shè)
AB
=
a
,
AC
=
b
,
AA′
=
c
,在面對(duì)角線AC′和棱BC上分別取點(diǎn)M、N,使
AM
=k
AC′
,
BN
=k
BC
(0≤k≤1),求證:三向量
MN
、
a
、
c
共面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)平面α的一個(gè)法向量為
n1
=(1,2,-2)
,平面β的一個(gè)法向量為
n2
=(-2,-4,k)
,若αβ,則k=( 。
A.2B.-4C.-2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知正四棱錐P-ABCD的側(cè)棱與底面所成角為60°,MPA中點(diǎn),連接DM,則DM與平面PAC所成角的大小是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,平面平面,四邊形是正方形,四邊形是矩形,且,的中點(diǎn),則與平面所成角的正弦值為(  。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知的頂點(diǎn)和重心,則點(diǎn)C的坐標(biāo)為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)平面向量,則(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案