設a為實數(shù),函數(shù)f(x)=x2+|x-a|+1,x∈R.
(1)討論f(x)的奇偶性;
(2)求f(x)的最小值.
解:(1)當a=0時,函數(shù)f(-x)=(-x)2+|-x|+1=f(x),此時f(x)為偶函數(shù). 當a≠0時,f(a)=a2+1,f(-a)=a2+2|a|+1,f(-a)≠f(a),f(-a)≠-f(a). 此時函數(shù)f(x)既不是奇函數(shù),也不是偶函數(shù) (2)①當x≤a時,函數(shù)f(x)=x2-x+a+1=(x-)2+a+. 若a≤,則函數(shù)f(x)在(-∞,a]上單調遞減,從而,函數(shù)f(x)在(-∞,a]上的最小值為f(a)=a2+1. 若a>,則函數(shù)f(x)在(-∞,a上的最小值為f()=+a,且f()≤ f(a). ②當x≥a時,函數(shù)f(x)=x2+x-a+1=(x+)2-a+. 若a≤-,則函數(shù)f(x)在[a,+∞上的最小值為f(-)=-a,且f(-)≤f(a). 若a>-,則函數(shù)f(x)在[a,+∞)上單調遞增,從而,函數(shù)f(x)在[a,+∞)上的最小值為f(a)=a2+1. 綜上,當a≤-時,函數(shù)f(x)的最小值是-a. 當-<a≤時,函數(shù)f(x)的最小值是a2+1. 當a>時,函數(shù)f(x)的最小值是a+.
|
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com