分析 (1)由題意結(jié)合隱含條件解關(guān)于a,b,c的方程組,求得a,b的值,則橢圓方程可求;
(2)設(shè)P(x1,y1),Q(x2,y2),通過(guò)斜率計(jì)算可得${{x}_{1}}^{2}+{{x}_{2}}^{2}=12$,分x1=x2、x1≠x2兩種情況討論,利用點(diǎn)到直線的距離公式、三角形面積公式計(jì)算即得結(jié)論.
解答 解:(1)由題意得$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{6}}{3}}\\{\frac{9}{{a}^{2}}+\frac{1}{^{2}}=1}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得:a2=12,b2=4.
∴橢圓C的方程為$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}=1$;
(2)結(jié)論:四邊形PQP1Q1的面積為定值.
理由如下:
由題意得:四條垂線的方程為:x=±2$\sqrt{3}$,y=±2,
則A(2$\sqrt{3}$,2),B(-2$\sqrt{3}$,2),
∴${k}_{OA}•{k}_{OB}=-\frac{1}{3}$.
設(shè)P(x1,y1),Q(x2,y2),則$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}=-\frac{1}{3}$(*)
PQ=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$.
∵點(diǎn)P、Q在橢圓C上,∴${{y}_{1}}^{2}=4(1-\frac{{{x}_{1}}^{2}}{12}),{{y}_{2}}^{2}=4(1-\frac{{{x}_{2}}^{2}}{12})$,
將(*)式平方得:${{x}_{1}}^{2}{{x}_{2}}^{2}=9×16(1-\frac{{{x}_{1}}^{2}}{12})(1-\frac{{{x}_{2}}^{2}}{12})$,即${{x}_{1}}^{2}+{{x}_{2}}^{2}=12$,
①若x1=x2,則P、P1、Q、Q1分別是直線OA、OB與橢圓的交點(diǎn),
∴四個(gè)點(diǎn)的坐標(biāo)為:($\sqrt{6},\sqrt{2}$),($-\sqrt{6},-\sqrt{2}$),(-$\sqrt{6},\sqrt{2}$),($\sqrt{6},-\sqrt{2}$),
∴四邊形PQP1Q1的面積為$8\sqrt{3}$;
②若x1≠x2,則直線PQ的方程可設(shè)為:$y-{y}_{1}=\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}(x-{x}_{1})$,
化簡(jiǎn)得:(y2-y1)x-(x2-x1)y+x2y1-x1y2=0,
∴點(diǎn)O到直線PQ的距離為d=$\frac{|{x}_{1}{y}_{2}-{x}_{2}{y}_{1}|}{\sqrt{({x}_{2}-{x}_{1})^{2}+({y}_{2}-{y}_{1})^{2}}}$,
∴△OPQ的面積S=$\frac{1}{2}$PQ•d=$\frac{1}{2}$|x1y2-x2y1|=$\frac{1}{2}$$\sqrt{{{x}_{1}}^{2}{{y}_{2}}^{2}-2{x}_{1}{x}_{2}{y}_{1}{y}_{2}+{{x}_{2}}^{2}{{y}_{1}}^{2}}$
=$\frac{1}{2}$$\sqrt{4({{x}_{1}}^{2}+{{x}_{2}}^{2})}$=$\frac{1}{2}\sqrt{4×12}=2\sqrt{3}$.
根據(jù)橢圓的對(duì)稱性,故四邊形PQP1Q1的面積為4S,即為定值$8\sqrt{3}$.
綜上:四邊形PQP1Q1的面積為定值$8\sqrt{3}$.
點(diǎn)評(píng) 本題是一道直線與圓錐曲線的綜合題,考查橢圓的標(biāo)準(zhǔn)方程、點(diǎn)的坐標(biāo)、點(diǎn)到直線的距離、三角形面積公式,韋達(dá)定理等基礎(chǔ)知識(shí),考查分類討論的思想,考查運(yùn)算求解能力,注意解題方法的積累,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{2}$ | D. | $\frac{5}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8+4$\sqrt{2}$ | B. | 4+2$\sqrt{2}$ | C. | 2$\sqrt{2}$+2$\sqrt{3}$ | D. | 2+2$\sqrt{2}$+2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com