10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax,x≤1}\\{-x-3,x>1}\end{array}\right.$,則“a≤-2”是“f(x)在R上單調(diào)函數(shù)”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 利用一次函數(shù)與二次函數(shù)的單調(diào)性、函數(shù)的單調(diào)性即可得出,

解答 解:當(dāng)x>1時(shí),f(x)=-x-3,單調(diào)遞減;
當(dāng)x≤1時(shí),f(x)=x2+ax=$(x+\frac{a}{2})^{2}$-$\frac{{a}^{2}}{4}$,當(dāng)$1≤-\frac{a}{2}$,即a≤-2時(shí),函數(shù)f(x)單調(diào)遞減.
∵f(x)在R上單調(diào)函數(shù)”,
∴-1-3≤1+a,解得a≥-4.
∴“a≤-2”是“f(x)在R上單調(diào)函數(shù)”的必要而不充分條件.
故選:B.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、充要條件的判定、不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知拋物線x2=8y上的點(diǎn)P到拋物線的焦點(diǎn)距離為5,則點(diǎn)P的縱坐標(biāo)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}是各項(xiàng)均為正數(shù)的等差數(shù)列,首項(xiàng)a1=1,其前n項(xiàng)和為Sn;數(shù)列{bn}是等比數(shù)列,首項(xiàng)b1=2,且b2S2=16,b3S3=72.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若${c_n}=\frac{S_n}{b_n}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(diǎn)(3,-1),離心率e=$\frac{\sqrt{6}}{3}$.
(1)求橢圓C的方程;
(2)分別過橢圓C的四個(gè)頂點(diǎn)作坐標(biāo)軸的垂線,圍成如圖所示的矩形,A、B是所圍成的矩形在x軸上方的兩個(gè)頂點(diǎn).若P、Q是橢圓C上兩個(gè)動(dòng)點(diǎn),直線0P、OQ與橢圓的另一交點(diǎn)分別為P1、Q1,且直線OP、0Q的斜率之積等于直線OA、0B的斜率之積,試問四邊形PQP1Q1的面積是否為定值?若為定值,求出其值;若不為定值,說明理由(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.要得到y(tǒng)=cosx-$\sqrt{3}$sinx的圖象,只需將y=2sinx( 。
A.向左平移$\frac{5π}{6}$個(gè)單位長(zhǎng)度B.向右平移$\frac{5π}{6}$個(gè)單位長(zhǎng)度
C.向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度D.向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.當(dāng)a為何值時(shí),(a-2)x2+4$\sqrt{5}$x+a-3<0的解為一切實(shí)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}的通項(xiàng)公式為an=pn3+qn+2,且a2=4,a3=20,則a5=112.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)求證:1+$\frac{1}{{3}^{2}}$+$\frac{1}{{5}^{2}}$+…+$\frac{1}{(2n-1)^{2}}$>$\frac{7}{6}$-$\frac{1}{2(2n-1)}$(n≥2)
(2)求證:$\frac{1}{4}$+$\frac{1}{16}$+$\frac{1}{36}$+…+$\frac{1}{4{n}^{2}}$<$\frac{1}{2}$-$\frac{1}{4n}$
(3)求證:$\frac{1}{2}$+$\frac{1•3}{2•4}$+$\frac{1•3•5}{2•4•6}$+…+$\frac{1•3•5…(2n-1)}{2•4•6…2n}$<$\sqrt{2n+1}$-1
(4)求證:2($\sqrt{n+1}$-1)<1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$<$\sqrt{2}$($\sqrt{2n+1}$-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求適合方程tan(19x)°=$\frac{cos99°+sin99°}{cos99°-sin99°}$的最小正整數(shù)x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案