3.定義在R上的函數(shù)f(x)滿足:f(x+1)=$\sqrt{2f(x)-{f}^{2}(x)}$+1,數(shù)列{an}的前2015項和為-$\frac{4031}{4}$,an=f2(n)-2f(n),n∈N*,則f(2015)的值為$\frac{3}{2}$.

分析 由函數(shù)性質(zhì)得an+1+an=-1由此利用數(shù)列性質(zhì)能求出f(2015).

解答 解:由已知可得,[f2(x+1)-2f(x+1)]+[f2(x)-2f(x)]=-1,
即an+1+an=-1,∴S2005=-1007+a2005=-$\frac{4031}{4}$,
a2005=-$\frac{3}{4}$=f2(2015)-2f(2015),解得f(2015)=$\frac{1}{2}$或f(2015)=$\frac{3}{2}$.
又∵1≤f(x)≤2,∴f(2015)=$\frac{3}{2}$.
故答案為:$\frac{3}{2}$.

點評 本題考查函數(shù)值的求法,是中檔題,解題時要認真審題,注意數(shù)列知識的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

13.下列命題:
①已知m,n表示兩條不同的直線,α,β表示兩個不同的平面,并且m⊥α,n?β,則“α⊥β”是“m∥n”的必要不充分條件;  
②不存在x∈(0,1),使不等式成立log2x<log3x; 
③“若am2<bm2,則a<b”的逆命題為真命題;
④?θ∈R,函數(shù)f(x)=sin(2x+θ)都不是偶函數(shù).
正確的命題序號是①.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.下列有關(guān)命題的說法中,正確的是( 。
A.?x0∈R,使得${3^{x_0}}≤0$
B.“$x=\frac{π}{6}$”是“$cosx=\frac{{\sqrt{3}}}{2}$”的必要不充分條件
C.?x∈R+,lgx>0
D.“x=1”是“x≥1”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.40名高三學生某次數(shù)學考試成績(單位:分)的頻率分布直方圖如下:
(Ⅰ)求頻率分布直方圖中x的值;
(Ⅱ)分別求出成績落在(130,140]與(140,150]中的學生人數(shù);
(Ⅲ)從成績落在(130,150]中的學生中任選2人,記成績落在(140,150]中的人數(shù)為X,求X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知f(x)=2sin(2x+$\frac{π}{6}$),若將它的圖象向右平移$\frac{π}{6}$個單位,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的圖象的一個對稱中心為(  )
A.(0,0)B.($\frac{π}{6}$,0)C.($\frac{π}{12}$,0)D.($\frac{π}{4}$,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設(shè)等差數(shù)列{an}的前n項和為Sn,若S9=2,則a2+a10+a11-a13=( 。
A.$\frac{2}{9}$B.$\frac{4}{9}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=1+log${\;}_{\frac{1}{2}}$x,則f(-4)=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設(shè)i是虛數(shù)單位,$\overline z$表示復數(shù)z的共軛復數(shù).若z=1-2i,則復數(shù)$z+i•\overline z$在復平面內(nèi)對應的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知指數(shù)函數(shù)y=f(x)的圖象過點P(3,27),則在(0,10]內(nèi)任取一個實數(shù)x,使得f(x)>81的概率為( 。
A.$\frac{3}{10}$B.$\frac{7}{10}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

同步練習冊答案