設(shè)函數(shù)f(x)=1-ex的圖象與x軸相交于點(diǎn)P,則曲線在點(diǎn)P的切線方程為


  1. A.
    y=-x+1
  2. B.
    y=x+1
  3. C.
    y=-x
  4. D.
    y=x
C
分析:由函數(shù)f(x)=1-ex的圖象與x軸相交于點(diǎn)P,知P(0,0),由此利用導(dǎo)數(shù)的幾何意義能求出曲線在點(diǎn)P的切線方程.
解答:∵函數(shù)f(x)=1-ex的圖象與x軸相交于點(diǎn)P,
∴P(0,0),
∵f′(x)=-ex,
∴f′(0)=-e0=-1,
∴曲線在點(diǎn)P的切線方程為y=-x.
故選C.
點(diǎn)評(píng):本題考查曲線的切線方程的求法,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意導(dǎo)數(shù)的幾何意義的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=|1-
1x
|(x>0),證明:當(dāng)0<a<b,且f(a)=f(b)時(shí),ab>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1-
1-x
x
(x<0)
a+x2(x≥0)
,要使f(x)在(-∞,+∞)內(nèi)連續(xù),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1             (x≤
3
)
4-x2
(
3
<x<2)
0              (x≥2)
,則
2010
-1
f(x)dx的值為
π
3
+
2+
3
2
π
3
+
2+
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1-|x-1|,x<2
1
2
f(x-2),x≥2
,則函數(shù)F(x)=xf(x)-1的零點(diǎn)的個(gè)數(shù)為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1,x>0
0,x=0
-1,x<0
,g(x)=x2f(x-1),則函數(shù)g(x)的遞減區(qū)間是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案