13.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,右頂點(diǎn)為A,過F作AF的垂線與雙曲線的兩條漸近線交于B,C兩點(diǎn),過B,C分別作AC,AB的垂線,兩垂線交于點(diǎn)D,若D到直線BC的距離小于2(a+$\sqrt{{a}^{2}+^{2}}$),則該雙曲線的離心率的取值范圍是( 。
A.(1,2)B.(1,$\sqrt{2}$)C.($\sqrt{2}$,2)D.($\sqrt{2}$,$\sqrt{3}$)

分析 求出雙曲線的漸近線方程,令x=c,求得B,C的坐標(biāo),由雙曲線的對(duì)稱性知D在x軸上,設(shè)D(x,0),則由BD⊥AC得$\frac{\frac{bc}{a}}{c-x}$•(-$\frac{\frac{bc}{a}}{c-a}$)=-1,求出c-x,利用D到直線BC的距離小于2(a+$\sqrt{{a}^{2}+^{2}}$),建立不等式關(guān)系,結(jié)合雙曲線離心率的定義,即可得出結(jié)論.

解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線方程為y=±$\frac{a}$x,
由題意可得D為△ABC的垂心,
即有AD⊥BC,即D在x軸上,
令x=c,可得y=$\frac{a}$x=$\frac{a}$•c=$\frac{bc}{a}$,
B(c,$\frac{bc}{a}$),同理C(c,-$\frac{bc}{a}$),
由BD⊥AC,可得kBD•kAC=-1,
由題意,A(a,0),
設(shè)D(x,0),則由BD⊥AC得$\frac{\frac{bc}{a}}{c-x}$•(-$\frac{\frac{bc}{a}}{c-a}$)=-1,
∴c-x=$\frac{^{2}{c}^{2}}{{a}^{2}(c-a)}$,
∵D到直線BC的距離小于2(a+$\sqrt{{a}^{2}+^{2}}$)=2(a+c),
∴$\frac{^{2}{c}^{2}}{{a}^{2}(c-a)}$<2(a+c),
∴$\frac{^{2}{c}^{2}}{{a}^{2}}$<2(c2-a2)=2b2,
則c2<2a2
即c<$\sqrt{2}$a,
即1<e<$\sqrt{2}$,
則曲線的離心率的取值范圍是(1,$\sqrt{2}$).
故選:B.

點(diǎn)評(píng) 本題考查雙曲線的方程和性質(zhì),考查三角形的垂心的概念,以及兩直線垂直的條件:斜率之積為-1,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=|ax-1|,不等式f(x)≤3的解集是{x|-1≤x≤2}.
(Ⅰ)求a的值;
(II)若$\frac{f(x)+f(-x)}{3}$<|k|存在實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知14a=7b=4c=2,則$\frac{1}{a}$-$\frac{1}$+$\frac{1}{c}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,某三棱錐的三視圖,則該三棱錐的體積為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年河北省保定市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù),則的值為 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知拋物線y2=12x上一點(diǎn)M到焦點(diǎn)的距離為8,則點(diǎn)M的橫坐標(biāo)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.向量$\overrightarrow{a}$=(2-x,-1,y),$\overrightarrow$=(-1,x,-1).若$\overrightarrow{a}$∥$\overrightarrow$,則x+y=( 。
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=Asin(ωx+ϕ)(其中A>0,ω>0,0<ϕ<π)在$x=\frac{π}{3}$處取得最大值2,其圖象與x軸的相鄰兩個(gè)交點(diǎn)的距離為π.
(Ⅰ)求函數(shù)f(x)的解析式及其增區(qū)間;
(Ⅱ)設(shè)函數(shù)g(x)=f(x)•cosx-1,求函數(shù)g(x)在區(qū)間$(0\;,\;\frac{π}{2})$上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x)是R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=2x,則f(-1)=-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案