【題目】以下給出了4個(gè)命題:
(1)兩個(gè)長度相等的向量一定相等;
(2)相等的向量起點(diǎn)必相同;
(3)若,且,則;
(4)若向量的模小于的模,則.
其中正確命題的個(gè)數(shù)共有( )
A.3 個(gè)B.2 個(gè)C.1 個(gè)D.0個(gè)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(a>0且a≠1)是奇函數(shù).
(1)求常數(shù)k的值;
(2)若已知f(1)=,且函數(shù)在區(qū)間[1,+∞])上的最小值為—2,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為:.
(1)若曲線的參數(shù)方程為(為參數(shù)),求曲線的直角坐標(biāo)方程和曲線的普通方程;
(2)若曲線的參數(shù)方程為(為參數(shù)),,且曲線與曲線的交點(diǎn)分別為、,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙二人去看望高中數(shù)學(xué)張老師,期間他們做了一個(gè)游戲,張老師的生日是月日,張老師把告訴了甲,把告訴了乙,然后張老師列出來如下10個(gè)日期供選擇: 2月5日,2月7日,2月9日,3月2日,3月7日,5月5日,5月8日,7月2日,7月6日,7月9日.看完日期后,甲說“我不知道,但你一定也不知道”,乙聽了甲的話后,說“本來我不知道,但現(xiàn)在我知道了”,甲接著說,“哦,現(xiàn)在我也知道了”.請(qǐng)問張老師的生日是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為1的正方體中,E,F(xiàn)分別為線段CD和上的動(dòng)點(diǎn),且滿足,則四邊形所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點(diǎn)的三個(gè)面上的正投影的面積之和( 。
A. 有最小值B. 有最大值C. 為定值3D. 為定值2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;
(2)證明:當(dāng)時(shí),函數(shù)有最小值,設(shè)最小值為,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)對(duì)某市工薪階層關(guān)于“樓市限購令”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽調(diào)了人,他們?cè)率杖氲念l數(shù)分布及對(duì)“樓市限購令”贊成人數(shù)如下表.
月收入(單位百元) | ||||||
頻數(shù) | ||||||
贊成人數(shù) |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面列聯(lián)表,并問是否有的把握認(rèn)為“月收入以元為分界點(diǎn)對(duì)“樓市限購令”的態(tài)度有差異;
月收入不低于百元的人數(shù) | 月收入低于百元的人數(shù) | 合計(jì) | |
贊成 | ______________ | ______________ | ______________ |
不贊成 | ______________ | ______________ | ______________ |
合計(jì) | ______________ | ______________ | ______________ |
(2)若對(duì)在、的被調(diào)查者中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記選中的人中不贊成“樓市限購令”的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
參考公式:,其中.
參考值表:
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com