已知橢圓經(jīng)過點(diǎn),且兩焦點(diǎn)與短軸的兩個端點(diǎn)的連線構(gòu)成一正方形.
(1)求橢圓的方程;
(2)直線與橢圓交于,兩點(diǎn),若線段的垂直平分線經(jīng)過點(diǎn),求
(為原點(diǎn))面積的最大值.
(1)(2) 面積的最大值為.
解析試題分析:(1)由已知得,再根據(jù)橢圓經(jīng)過點(diǎn),代入橢圓方程即可.
(2)設(shè)
當(dāng)直線的斜率為時,可得,由,得到
;
當(dāng)直線的斜率不為時,將的方程為與橢圓方程聯(lián)立,
整理得,
由, 得到
應(yīng)用韋達(dá)定理,,化簡得到
代入,得到;
通過確定原點(diǎn)到直線的距離為,得到 求其最值.
試題解析:(1)∵橢圓的兩焦點(diǎn)與短軸的兩個端點(diǎn)的連線構(gòu)成正方形,∴, ∴, 2分
又∵橢圓經(jīng)過點(diǎn),代入可得,
∴故所求橢圓方程為 4分
(2)設(shè)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/84/2/1zstk3.png" style="vertical-align:middle;" />的垂直平分線通過點(diǎn), 顯然直線有斜率,
當(dāng)直線的斜率為時,則的垂直平分線為軸,此時
所以,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ef/b/gqnmc1.png" style="vertical-align:middle;" />,所以
所以,當(dāng)且僅當(dāng)時,取得最大值為, 7分
當(dāng)直線的斜率不為時,則設(shè)的方程為
所以,代入得到 8分
當(dāng), 即
方程有兩個不同的解又, 10分
所以,又,化簡得到
代入,得到  
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線關(guān)于軸對稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)、、均在拋物線上.
(1)寫出該拋物線的方程及其準(zhǔn)線方程;
(2)當(dāng)與的斜率存在且傾斜角互補(bǔ)時,求的值及直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓C0:=1(a>b>0,a、b為常數(shù)),動圓C1:x2+y2=,b<t1<a.點(diǎn)A1、A2分別為C0的左、右頂點(diǎn),C1與C0相交于A、B、C、D四點(diǎn).
(1)求直線AA1與直線A2B交點(diǎn)M的軌跡方程;
(2)設(shè)動圓C2:x2+y2=與C0相交于A′,B′,C′,D′四點(diǎn),其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,1),P是動點(diǎn),且△POA的三邊所在直線的斜率滿足kOP+kOA=kPA.
(1)求點(diǎn)P的軌跡C的方程;
(2)若Q是軌跡C上異于點(diǎn)P的一個點(diǎn),且=λ,直線OP與QA交于點(diǎn)M,問:是否存在點(diǎn)P,使得△PQA和△PAM的面積滿足S△PQA=2S△PAM?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓C的方程為+y2=1,A、B是四條直線x=±2,y=±1所圍成的矩形的兩個頂點(diǎn).
(1)設(shè)P是橢圓C上任意一點(diǎn),若=m+n,求證:動點(diǎn)Q(m,n)在定圓上運(yùn)動,并求出定圓的方程;
(2)若M、N是橢圓C上兩個動點(diǎn),且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,等邊三角形OAB的邊長為8,且其三個頂點(diǎn)均在拋物線E:x2=2py(p>0)上.
(1)求拋物線E的方程;
(2)設(shè)動直線l與拋物線E相切于點(diǎn)P,與直線y=-1相交于點(diǎn)Q.證明:以PQ為直徑的圓恒過y軸上某定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知過曲線上任意一點(diǎn)作直線的垂線,垂足為,且.
⑴求曲線的方程;
⑵設(shè)、是曲線上兩個不同點(diǎn),直線和的傾斜角分別為和,當(dāng)變化且為定值時,證明直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的右焦點(diǎn)F,左、右準(zhǔn)線分別為l1:x=-m-1,l2:x=m+1,且l1、l2分別與直線y=x相交于A、B兩點(diǎn).
(1)若離心率為,求橢圓的方程;
(2)當(dāng)·<7時,求橢圓離心率的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com