如圖,橢圓C0=1(a>b>0,a、b為常數(shù)),動(dòng)圓C1:x2+y2,b<t1<a.點(diǎn)A1、A2分別為C0的左、右頂點(diǎn),C1與C0相交于A、B、C、D四點(diǎn).

(1)求直線AA1與直線A2B交點(diǎn)M的軌跡方程;
(2)設(shè)動(dòng)圓C2:x2+y2與C0相交于A′,B′,C′,D′四點(diǎn),其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:為定值.

(1)=1(x<-a,y<0).(2)見(jiàn)解析

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)右焦點(diǎn)作斜率為的直線交曲線兩點(diǎn),且,又點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn),試問(wèn)、、四點(diǎn)是否共圓?若共圓,求出圓心坐標(biāo)和半徑;若不共圓,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的由頂點(diǎn)為A,右焦點(diǎn)為F,直線與x軸交于點(diǎn)B且與直線交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),,過(guò)點(diǎn)F的直線與橢圓交于不同的兩點(diǎn)M,N.

(1)求橢圓的方程;
(2)求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:=1(a>b>0)的離心率e=,一條準(zhǔn)線方程為x=
(1)求橢圓C的方程;
(2)設(shè)G、H為橢圓C上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),且OG⊥OH.
①當(dāng)直線OG的傾斜角為60°時(shí),求△GOH的面積;
②是否存在以原點(diǎn)O為圓心的定圓,使得該定圓始終與直線GH相切?若存在,請(qǐng)求出該定圓方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖;.已知橢圓C:的離心率為,以橢圓的左頂點(diǎn)T為圓心作圓T:設(shè)圓T與橢圓C交于點(diǎn)M、N.

(1)求橢圓C的方程;
(2)求的最小值,并求此時(shí)圓T的方程;
(3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與軸交于點(diǎn)RS,O為坐標(biāo)原點(diǎn). 試問(wèn);是否存在使最大的點(diǎn)P,若存在求出P點(diǎn)的坐標(biāo),若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓E:+y2=1(a>1)的上頂點(diǎn)為M(0,1),兩條過(guò)M的動(dòng)弦MA、MB滿足MA⊥MB.
(1)當(dāng)坐標(biāo)原點(diǎn)到橢圓E的準(zhǔn)線距離最短時(shí),求橢圓E的方程;
(2)若Rt△MAB面積的最大值為,求a;
(3)對(duì)于給定的實(shí)數(shù)a(a>1),動(dòng)直線AB是否經(jīng)過(guò)一定點(diǎn)?如果經(jīng)過(guò),求出定點(diǎn)坐標(biāo)(用a表示);反之,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:=1(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.
(1)求橢圓C的方程;
(2)當(dāng)△AMN的面積為時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓經(jīng)過(guò)點(diǎn),且兩焦點(diǎn)與短軸的兩個(gè)端點(diǎn)的連線構(gòu)成一正方形.
(1)求橢圓的方程;
(2)直線與橢圓交于,兩點(diǎn),若線段的垂直平分線經(jīng)過(guò)點(diǎn),求
為原點(diǎn))面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若橢圓=1的焦距為2,求橢圓上的一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和.

查看答案和解析>>

同步練習(xí)冊(cè)答案