【題目】已知指數(shù)函數(shù)滿(mǎn)足.又定義域?yàn)閷?shí)數(shù)集R的函數(shù) 是奇函數(shù).
①確定的解析式;
②求的值;
③若對(duì)任意的R,不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】①;②,;③.
【解析】
試題分析:①設(shè)指數(shù)函數(shù),過(guò)點(diǎn),代入求;
②因?yàn)槎x域?yàn)?/span>R,且是奇函數(shù),所以解得,又根據(jù)是奇函數(shù),滿(mǎn)足代入后解得;
③根據(jù)奇函數(shù)將不等式化簡(jiǎn)為恒成立,根據(jù)②所求得函數(shù)的解析式,判定函數(shù)的單調(diào)性,從而得到恒成立,根據(jù)求的范圍.
試題解析:解:①設(shè),∵,則,∴,
∴.
②由①知.∵是奇函數(shù),且定義域?yàn)镽,∴,
即,∴,∴,又,∴,
∴. 故,.
③由②知,易知在R上為減函數(shù).
又∵是奇函數(shù),從而不等式等價(jià)于,即恒成立,
∵在R上為減函數(shù),∴有,
即對(duì)于一切R有恒成立,∴判別式,
∴.
故實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極標(biāo)坐系中,已知圓的圓心,半徑
(1)求圓的極坐標(biāo)方程;
(2)若,直線(xiàn)的參數(shù)方程為(t為參數(shù)),直線(xiàn)交圓于兩點(diǎn),求弦長(zhǎng)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿(mǎn)足a1= ,且an+1=an(an+1)(n∈N*),則m= + +…+ 的整數(shù)部分是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)圓錐的底面半徑為1,高為3,在圓錐中有一個(gè)半徑為x的內(nèi)接圓柱.
(1)試用x表示圓柱的高;
(2)當(dāng)x為何值時(shí),圓柱的側(cè)面積最大,最大側(cè)面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形中,,,四邊形
為矩形,平面平面,.
(I)求證:平面;
(II)點(diǎn)在線(xiàn)段上運(yùn)動(dòng),設(shè)平面與平面所成二面角的平面角為,
試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】王老師的班上有四個(gè)體育健將甲、乙、丙、丁,他們都特別擅長(zhǎng)短跑,在某次運(yùn)動(dòng)會(huì)上,他們四人要組成一個(gè)米接力隊(duì),王老師要安排他們四個(gè)人的出場(chǎng)順序,以下是他們四人的對(duì)話(huà):
甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;
丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒;
王老師聽(tīng)了他們四人的對(duì)話(huà),安排了一種合理的出場(chǎng)順序,滿(mǎn)足了他們的所有要求, 據(jù)此我們可以斷定,在王老師安排的出場(chǎng)順序中,跑第三棒的人是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)F(x)= 是定義在R上的函數(shù),其中f(x)的導(dǎo)函數(shù)為f′(x),滿(mǎn)足f′(x)<f(x)對(duì)于x∈R恒成立,則( )
A.f(2)>e2f(0),f(2012)<e2012f(0)
B.f(2)<e2f(0),f(2012)<e2012f(0)
C.f(2)>e2f(0),f(2012)>e2012f(0)
D.f(2)<e2f(0),f(2012)>e2012f(0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車(chē)“忽如一夜春風(fēng)來(lái)”,遍布了各個(gè)城市的大街小巷.為了解共享單車(chē)在市的使用情況,某調(diào)研機(jī)構(gòu)在該市隨機(jī)抽取了位市民進(jìn)行調(diào)查,得到的列聯(lián)表如下:
經(jīng)常使用 | 偶爾或不用 | 合計(jì) | |
歲及以下的人數(shù) | |||
歲以上的人數(shù) | |||
合計(jì) |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為使用共享單車(chē)的情況與年齡有關(guān)?
(2)現(xiàn)從所抽取的歲以上的市民中利用分層抽樣的方法再抽取位市民,從這位市民中隨機(jī)選出位市民贈(zèng)送禮品,求選出的位市民中至少有位市民經(jīng)常使用共享單車(chē)的概率.
參考公式及數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)都大于1,且a1=2,a ﹣an+1﹣a +1=0(n∈N*).
(1)求證: ≤an<an+1≤n+2;
(2)求證: + + +…+ <1.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com