A. | 1.3 | B. | 1.4 | C. | 1.5 | D. | 1.6 |
分析 在△ADC中,可求得AC=2,在△BDC中,利用正弦定理可求得BC,最后在△ABC中,利用余弦定理可求得AB.
解答 解:依題意,△ADC為等邊三角形,
∴AC=2.
在△BDC中,CD=2,由正弦定理得:$\frac{BC}{sin30°}=\frac{CD}{sin45°}$=2$\sqrt{2}$,
∴BC=$\sqrt{2}$.
在△ABC中,由余弦定理得AB2=BC2+AC2-2BC•ACcos45°=2+4-2×$\sqrt{2}$×2×$\frac{\sqrt{2}}{2}$=2,
∴AB=$\sqrt{2}$≈1.4km.
故選:B.
點評 本題考查正弦定理與余弦定理,考查解三角形,考查分析與運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,0,1} | B. | {-1,0} | C. | {-2,-1,0,1} | D. | {-1,0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 2 | 5 | 8 | 9 | 11 |
y | 12 | 10 | 8 | 8 | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{9}$ | B. | $-\frac{2}{9}$ | C. | $\frac{7}{9}$ | D. | $-\frac{7}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “a≤b”是“a+c≤b+c”的必要不充分條件 | |
B. | 如果空間兩條直線不相交,則這兩條直線平行 | |
C. | 設(shè)命題p:?x∈R,x2+1>0,則¬p為?x0∈R,x02+1<0 | |
D. | “若α=$\frac{π}{4}$,則tanα=1”的逆否命題為“若tanα≠1,則α≠$\frac{π}{4}$” |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com