【題目】設(shè)集合A={x|﹣1≤x≤2},B={x|x2﹣x+(m﹣m2)<0}.
(1)當(dāng)m< 時,化簡集合B;
(2)p:x∈A,命題q:x∈B,且命題p是命題q的必要不充分條件,求實數(shù)m的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF 2CE,G是線段BF上一點,AB=AF=BC=2.
(1)當(dāng)GB=GF時,求證:EG∥平面ABC;
(2)求二面角E﹣BF﹣A的余弦值;
(3)是否存在點G滿足BF⊥平面AEG?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足a1=2,an+1=3an+2,
(1)證明:是等比數(shù)列,并求的通項公式;
(2)證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 ( t為參數(shù)).以原點為極點,x軸正半軸為極軸 建立極坐標(biāo)系,圓C的方程為 ρ=2 sinθ.
(1)寫出直線l的普通方程和圓C的直角坐標(biāo)方程;
(2)若點P的直角坐標(biāo)為(1,0),圓C與直線l交于A,B兩點,求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)在區(qū)間A上,對a,b,c∈A,f(a),f(b),f(c)為一個三角形的三邊長,則稱函數(shù)f(x)為“三角形函數(shù)”.已知函數(shù)f(x)=xlnx+m在區(qū)間[ ,e]上是“三角形函數(shù)”,則實數(shù)m的取值范圍為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了讓學(xué)生更多的了解“數(shù)學(xué)史”知識,梁才學(xué)校高二年級舉辦了一次“追尋先哲的足跡,傾聽數(shù)學(xué)的聲音”的數(shù)學(xué)史知識競賽活動,共有800名學(xué)生參加了這次競賽.為了解本次競賽的成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計,統(tǒng)計結(jié)果見下表.請你根據(jù)頻率分布表解答下列問題:
序號 | 分組 | 組中值 | 頻數(shù) | 頻率 |
(i) | (分?jǐn)?shù)) | (Gi) | (人數(shù)) | (Fi) |
1 | 65 | ① | 0.12 | |
2 | 75 | 20 | ② | |
3 | 85 | ③ | 0.24 | |
4 | 95 | ④ | ⑤ | |
合計 | 50 | 1 |
(1)填充頻率分布表中的空格;
(2)為鼓勵更多的學(xué)生了解“數(shù)學(xué)史”知識,成績不低于85分的同學(xué)能獲獎,請估計在
參加的800名學(xué)生中大概有多少名學(xué)生獲獎?
(3)在上述統(tǒng)計數(shù)據(jù)的分析中有一項計算見算法流程圖,求輸出的S的值.查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義域為R的偶函數(shù)f(x)滿足對x∈R,有f(x+2)=f(x)﹣f(1),且當(dāng)x∈[2,3]時,f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個零點,則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求與雙曲線有相同的焦點且過點的雙曲線標(biāo)準(zhǔn)方程;
(2)求焦點在直線上的拋物線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx,g(x)= x2﹣kx;
(1)設(shè)k=m+ (m>0),若函數(shù)h(x)=f(x)+g(x)在區(qū)間(0,2)內(nèi)有且僅有一個極值點,求實數(shù)m的取值范圍;
(2)設(shè)M(x)=f(x)﹣g(x),若函數(shù)M(x)存在兩個零點x1 , x2(x1>x2),且滿足2x0=x1+x2 , 問:函數(shù)M(x)在(x0 , M(x0))處的切線能否平行于直線y=1,若能,求出該切線方程,若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com