已知圓心為點(diǎn)(2,-3),一條直徑的兩個(gè)端點(diǎn)分別在x軸和y軸上,則此圓的方程是________.

(x-2)2+(y+3)2=13
分析:直徑的兩個(gè)端點(diǎn)分別A(a,0)B(0,b),圓心(2,-3)為AB的中點(diǎn),利用中點(diǎn)坐標(biāo)公式求出a,b后,再利用兩點(diǎn)距離公式求出半徑.
解答:設(shè)直徑的兩個(gè)端點(diǎn)分別A(a,0)B(0,b).圓心為點(diǎn)(2,-3),由中點(diǎn)坐標(biāo)公式得,a=4,b=-6,∴r==
則此圓的方程是 (x-2)2+(y+3)2=13,
故答案為:(x-2)2+(y+3)2=13
點(diǎn)評:本題考查圓的方程求解,確定圓心、半徑即能求出圓的標(biāo)準(zhǔn)方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓心為點(diǎn)(2,-3),一條直徑的兩個(gè)端點(diǎn)分別在x軸和y軸上,則此圓的方程是
(x-2)2+(y+3)2=13
(x-2)2+(y+3)2=13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓心為C的圓經(jīng)過三個(gè)點(diǎn)O(0,0),A(-2,4),B(1,1).
(1)求圓C的方程;
(2)若直線l的斜率為-
43
,且直線l被圓C所截得的弦長為4,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知圓心為點(diǎn)C(2,1)的圓與直線3x+4y-35=0相切.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)對于圓C上的任一點(diǎn)P,是否存在定點(diǎn)A(不同于原點(diǎn)O)使得
|PA||PO|
恒為常數(shù)?若存在,求出點(diǎn)A的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓心為點(diǎn)(2,-3),一條直徑的兩個(gè)端點(diǎn)分別在x軸和y軸上,則此圓的方程是______.

查看答案和解析>>

同步練習(xí)冊答案