已知函數(shù)f(x)=x|x-m|(x∈R),且f(1)=0.
(Ⅰ)求m的值,并用分段函數(shù)的形式來表示f(x);
(Ⅱ)在圖給定的直角坐標(biāo)系內(nèi)作出函數(shù)f(x)的草圖;
( III)由圖象寫出函數(shù)f(x)的奇偶性及單調(diào)區(qū)間.

解:(I)∵f(x)=x|x-m|(x∈R),且f(1)=0,
∴f(1)=|1-m|=0,m=1
∵f(x)=x|x-1|(x∈R),
∴f(x)=,
(II)由(I)可得函數(shù)的圖象如下圖所示:

(III)由圖可得,該函數(shù)是非奇非偶函數(shù).該函數(shù)的單調(diào)區(qū)間:單調(diào)增區(qū)間有(-∞,-],[1,+∞)

單調(diào)減區(qū)間[,1].
分析:(I)利用f(1)=0,在函數(shù)f(x)=x|x-m|的解析式中令x=1,即可求出m的值,再利用零點分段表示,我們分析求出x<1和x≥1時,函數(shù)的解析式,進(jìn)而可以用分段函數(shù)的形式表示該函數(shù);
(II)根據(jù)分段函數(shù)分段畫的原則,我們根據(jù)(I)的解析式,分別畫出x<1和x≥1時,函數(shù)的圖象,綜合后即可得到該函數(shù)的圖象;
(III)根據(jù)(II)中函數(shù)的圖象,奇偶性,看是否關(guān)于原點對稱或關(guān)于縱軸對稱.單調(diào)增區(qū)間看上升趨勢,單調(diào)減區(qū)間看下降趨勢.
點評:本題主要考查絕對值函數(shù)轉(zhuǎn)化為分段函數(shù),研究其圖象和性質(zhì).還考查了數(shù)形結(jié)合的思想與方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案