【題目】在中,已知,,,D是邊AC上一點(diǎn),將沿BD折起,得到三棱錐.若該三棱錐的頂點(diǎn)A在底面BCD的射影M在線(xiàn)段BC上,設(shè),則x的取值范圍為( )
A.B.C.D.
【答案】B
【解析】
在折疊前圖1中,,垂足為,設(shè)圖1中在線(xiàn)段上的射影為,當(dāng)運(yùn)動(dòng)點(diǎn)與點(diǎn)無(wú)限接近時(shí),折痕接近,此時(shí)與點(diǎn)無(wú)限接近,得到,在圖2中,根據(jù)直角三角形的斜邊大于直角邊,得到,即可求解.
由將沿BD折起,得到三棱錐,且在底面的射影在線(xiàn)段上,
如圖2所示,平面,則,
在折疊前圖1中,作,垂足為,
在圖1中過(guò)作于點(diǎn),當(dāng)運(yùn)動(dòng)點(diǎn)與點(diǎn)無(wú)限接近時(shí),折痕接近,此時(shí)與點(diǎn)無(wú)限接近,
在圖2中,由于是直角的斜邊,為直角邊,所以,
由此可得,
因?yàn)?/span>中,,
由余弦定理可得,所以,
所以
由于,所以實(shí)數(shù)的取值范圍是,
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的右頂點(diǎn)為,上頂點(diǎn)為.已知橢圓的離心率為,.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線(xiàn):與橢圓交于,兩點(diǎn),且點(diǎn)在第二象限.與延長(zhǎng)線(xiàn)交于點(diǎn),若的面積是面積的3倍,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有7道題,其中5道甲類(lèi)題,2道乙類(lèi)題,張同學(xué)從中任取2道題解答.試求:
(1)所取的兩道題都是甲類(lèi)題的概率;
(2)所取的兩道題不是同一類(lèi)題的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知直線(xiàn)l的參數(shù)方程為:,為參數(shù)點(diǎn)的極坐標(biāo)為,曲線(xiàn)C的極坐標(biāo)方程為.
Ⅰ試將曲線(xiàn)C的極坐標(biāo)方程化為直角坐標(biāo)方程,并求曲線(xiàn)C的焦點(diǎn)在直角坐標(biāo)系下的坐標(biāo);
Ⅱ設(shè)直線(xiàn)l與曲線(xiàn)C相交于兩點(diǎn)A,B,點(diǎn)M為AB的中點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校在2016年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如下表所示.
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | 0.050 | |
第2組 | n | 0.350 | |
第3組 | 30 | p | |
第4組 | 20 | 0.200 | |
第5組 | 10 | 0.100 | |
合計(jì) | 100 | 1.000 |
(1)求頻率分布表中n,p
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第3、4、5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,則第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(3)在(2)的前提下,學(xué)校決定從6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至少有1名學(xué)生被甲考官面試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知橢圓上任意一點(diǎn)到其兩個(gè)焦點(diǎn),的距離之和等于,焦距為2c,圓,,是橢圓的左、右頂點(diǎn),AB是圓O的任意一條直徑,四邊形面積的最大值為.
(1)求橢圓C的方程;
(2)如圖,若直線(xiàn)與圓O相切,且與橢圓相交于M,N兩點(diǎn),直線(xiàn)與平行且與橢圓相切于P(O,P兩點(diǎn)位于的同側(cè)),求直線(xiàn),距離d的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在梯形中,,,四邊形為矩形,且平面,.
(1)求證:平面;
(2)點(diǎn)在線(xiàn)段上運(yùn)動(dòng),設(shè)平面與平面所成銳二面角為,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市旅游局為了進(jìn)一步開(kāi)發(fā)旅游資源,需要了解游客的情況,以便制定相應(yīng)的策略,在某月中隨機(jī)抽取甲、乙兩個(gè)景點(diǎn)各10天的游客數(shù),畫(huà)出莖葉圖如下:若景點(diǎn)甲中的數(shù)據(jù)的中位數(shù)是126,景點(diǎn)乙中的數(shù)據(jù)的平均數(shù)是124.
(1)求,的值;
(2)若將圖中景點(diǎn)甲中的數(shù)據(jù)作為該景點(diǎn)較長(zhǎng)一段時(shí)期內(nèi)的樣本數(shù)據(jù)(視樣本頻率為概率).今從這段時(shí)期內(nèi)任取4天,記其中游客數(shù)不低于125人的天數(shù)為,求概率;
(3)現(xiàn)從上圖的共20天的數(shù)據(jù)中任取2天的數(shù)據(jù)(甲、乙兩景點(diǎn)中各取1天),記其中游客數(shù)不低于115且不高于135人的天數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩點(diǎn),,線(xiàn)段為的直徑
(1)求的方程;
(2)若經(jīng)過(guò)點(diǎn)的直線(xiàn)被截得的弦長(zhǎng)為8,求此直線(xiàn)的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com