精英家教網 > 高中數學 > 題目詳情

【題目】己知橢圓上任意一點到其兩個焦點,的距離之和等于,焦距為2c,圓,,是橢圓的左、右頂點,AB是圓O的任意一條直徑,四邊形面積的最大值為

(1)求橢圓C的方程;

(2)如圖,若直線與圓O相切,且與橢圓相交于MN兩點,直線平行且與橢圓相切于PO,P兩點位于的同側),求直線,距離d的取值范圍.

【答案】(1)(2)

【解析】

(1)由橢圓的定義知:,由當直徑軸時四邊形的面積最大,最大為,可得,即橢圓方程得解;

(2)由直線與圓O相切,可得

由橢圓與直線相切可得:,

由兩平行線的距離公式可得

,則可得,代入運算即可得解.

解:(1)由橢圓的定義知:,

又當直徑軸時四邊形的面積最大,最大為,

橢圓

(2)因為直線與圓O相切,

又設直線,聯立消去y

化簡有

因為,

,又,

又由O,P兩點位于的同側,m,n異號,

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,是等邊三角形,平面的中點,的中點.

1)求證:平面;

2)求證:平面平面;

3)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱中, 分別為、的中點, , .

(1)求證:平面平面;

(2)若直線和平面所成角的正弦值等于,求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,左頂點為,過原點且斜率不為0的直線與橢圓交于兩點,其中點在第二象限,過點軸的垂線交于點

⑴求橢圓的標準方程;

⑵當直線的斜率為時,求的面積;

⑶試比較大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中,已知,,D是邊AC上一點,將沿BD折起,得到三棱錐.若該三棱錐的頂點A在底面BCD的射影M在線段BC上,設,則x的取值范圍為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知m為常數).

1)討論函數的單調性;

2)若對任意的,都存在,使得(其中e為自然對數的底數),求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】

已知點,,動點P滿足,記動點P的軌跡為W

)求W的方程;

)直線與曲線W交于不同的兩點C,D,若存在點,使得成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐 中, 平面 ,底面是等腰梯形,且 ,其中 .

1)證明:平面 平面 .

2)求點 到平面 的距離。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,其中

(Ⅰ)當時,求曲線處的切線方程;

(Ⅱ)討論的極值點的個數;

(Ⅲ)若y軸右側的圖象都不在x軸下方,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案