若關于x的方程在R上都有解,則23a·2b的最小值為(    )。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x+1定義在R上.
(1)若f(x)可以表示為一個偶函數(shù)g(x)與一個奇函數(shù)h(x)之和,求函數(shù)g(x),h(x)的解析式;
(2)若F(x)=g(2x)+2mh(x)+m2-m-1(m∈R),設h(x)=t,把F(x)表示為t的函數(shù)p(t);
(3)若關于x的方程F(x)=m2-m+2在x∈[1,2]上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log
1
2
x
與函數(shù)g(x)的圖象關于y=x對稱,
(1)若g(a)g(b)=2,且a<0,b<0,則
4
a
+
1
b
的最大值為
-9
-9

(2)設f(x)是定義在R上的偶函數(shù),對任意的x∈R,都有f(2-x)=f(x+2),且當x∈[-2,0]時,f(x)=g(x)-1,若關于x的方程f(x)-lo
g
(x+2)
a
=0(a>1)在區(qū)間(-2,6]內恰有三個不同實根,則實數(shù)a的取值范圍是
(
34
,2)
(
34
,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

若關于x的方程數(shù)學公式數(shù)學公式在R上都有解,則23a•2b的最小值為________.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年湖北省荊州市松滋二中高考數(shù)學限時訓練(解析版) 題型:解答題

若關于x的方程在R上都有解,則23a•2b的最小值為   

查看答案和解析>>

同步練習冊答案