12.函數(shù)$y=\frac{ln(2x-3)}{x-2}$的定義域是( 。
A.$[{\frac{3}{2},+∞})$B.$({\frac{3}{2},2})∪({2,+∞})$C.$[{\frac{3}{2},2})∪({2,+∞})$D.(-∞,2)∪(2,+∞)

分析 根據(jù)函數(shù)成立的條件即可求函數(shù)的定義域.

解答 解:要使函數(shù)有意義,則$\left\{\begin{array}{l}2x-3≥0\\ x≠2\end{array}\right.$,
得$x>\frac{3}{2}$且x≠2,即函數(shù)定義域為$({\frac{3}{2},2})∪({2,+∞})$,
故選B.

點評 本題主要考查函數(shù)的定義域的求解,根據(jù)函數(shù)成立的條件建立不等式關(guān)系是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知直線m,n和平面α,如果n?α,那么“m⊥n”是“m⊥α”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$(e為自然對數(shù)的底數(shù),e=2.71828…).
(1)證明:函數(shù)f(x)為奇函數(shù);
(2)判斷并證明函數(shù)f(x)的單調(diào)性,再根據(jù)結(jié)論確定f(m2-m+1)+f(-$\frac{3}{4}$)與0的大小關(guān)系;
(3)是否存在實數(shù)k,使得函數(shù)f(x)在定義域[a,b]上的值域為[kea,keb].若存在,求出實數(shù)k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)y=$\sqrt{lo{g}_{0.5}(3x-2)}$的定義域是(  )
A.[1,+∞)B.(1,+∞)C.(0,1]D.($\frac{2}{3}$,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.($\frac{9}{4}$)${\;}^{\frac{1}{2}}$+($\frac{8}{27}$)${\;}^{-\frac{1}{3}}$=3;log412-log43=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若函數(shù)f(x)=ex+e-x與g(x)=ex-e-x的定義域均為R,則(  )
A.f(x)與g(x)與均為偶函數(shù)B.f(x)為奇函數(shù),g(x)為偶函數(shù)
C.f(x)與g(x)與均為奇函數(shù)D.f(x)為偶函數(shù),g(x)為奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)$f(x)=sin(2x-\frac{π}{3})$.
(Ⅰ)當x∈R時,求f(x)的單調(diào)增區(qū)間;
(Ⅱ)當$x∈[0,\frac{π}{2}]$時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.如圖所示的偽代碼,如果輸入x的值為5,則輸出的結(jié)果y為23.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知點P(-2,$\frac{\sqrt{14}}{2}$)在橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上,過點P作圓O:x2+y2=2的切線,切點為A,B,若直線AB恰好過橢圓C的左焦點F,則a2+b2的值是( 。
A.13B.14C.15D.16

查看答案和解析>>

同步練習冊答案