1.如圖所示的偽代碼,如果輸入x的值為5,則輸出的結果y為23.

分析 根據(jù)算法語句寫出分段函數(shù),然后根據(jù)自變量選擇解析式,計算函數(shù)值即可.

解答 解:根據(jù)條件語句可知該語句執(zhí)行后是計算
y=$\left\{\begin{array}{l}{2x-2,x<5}\\{{x}^{2}-2,x≥5}\end{array}\right.$,
當x=5時,
y=52-2=23.
故答案為:23.

點評 本題考查了分段函數(shù),以及條件語句的應用問題,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx-a(x-1),g(x)=ex,其中e為自然對數(shù)的底數(shù).
(1)當a=1時,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)求函數(shù)y=f(x)在區(qū)間[1,e]上的值域;
(3)若a>0,過原點分別作曲線y=f(x)、y=g(x)的切線l1、l2,且兩切線的斜率互為倒數(shù),求證:$\frac{e-1}{e}<a<\frac{{{e^2}-1}}{e}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)$y=\frac{ln(2x-3)}{x-2}$的定義域是( 。
A.$[{\frac{3}{2},+∞})$B.$({\frac{3}{2},2})∪({2,+∞})$C.$[{\frac{3}{2},2})∪({2,+∞})$D.(-∞,2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.如圖,定義在[-2,2]的偶函數(shù)f(x)的圖象如圖所示,則方程f(f(x))=0的實根個數(shù)為( 。
A.3B.4C.5D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點為F,若F關于直線$\sqrt{3}$x+y=0的對稱點A是橢圓C上的點,則橢圓C的離心率為( 。
A.$\sqrt{2}$-1B.$\sqrt{3}$-1C.$\sqrt{5}$-2D.$\sqrt{6}$-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若方程$\sqrt{1-{x^2}}=a(x-2)$有兩個不相等實數(shù)根,則實數(shù)a的取值范圍是$(-\frac{{\sqrt{3}}}{3},0]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知集合M={x|1+x≥0},N={x|$\frac{4}{1-x}$>0},則M∩N=( 。
A.{x|-1≤x<1}B.{x|x>1}C.{x|-1<x<1}D.{x|x≥-1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知圓P的半徑等于橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1的長軸長,圓心是拋物線y2=4$\sqrt{2}$x的焦點,經(jīng)過點M(-$\sqrt{2}$,1)的直線1將圓P分成兩段弧,則劣弧長度的最小值為( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知A={x|2x>1},B={x|-1<x<1}.
(1)求A∪B及(∁RA)∩B;
(2)若集合C={x|x<a},滿足B∪C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案