11.已知P是△ABC所在平面內(nèi)一點(diǎn),$\overrightarrow{PB}+\overrightarrow{PC}+2\overrightarrow{PA}=\overrightarrow{O}$,則S△ABC:S△PBC=( 。
A.2:1B.4:1C.8:1D.16:1

分析 取BC中點(diǎn)D,根據(jù)向量加法的幾何意義可得$\overrightarrow{PB}+\overrightarrow{PC}$=2$\overrightarrow{PD}$.于是P為AD中點(diǎn),得出結(jié)論.

解答 解:取BC中點(diǎn)D,則$\overrightarrow{PB}+\overrightarrow{PC}$=2$\overrightarrow{PD}$.
∵$\overrightarrow{PB}+\overrightarrow{PC}+2\overrightarrow{PA}=\overrightarrow{O}$,∴$\overrightarrow{PB}+\overrightarrow{PC}$=-2$\overrightarrow{PA}$.
∴P為AD的中點(diǎn).
∴S△ABC=2S△PBC
故選:A.

點(diǎn)評(píng) 本題考查了平面向量的應(yīng)用,向量加法的幾何意義,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.$\frac{{{{(1+i)}^2}}}{{{{(1-i)}^3}}}$=( 。
A.-$\frac{1}{2}$-$\frac{i}{2}$B.-$\frac{1}{2}$+$\frac{i}{2}$C.$\frac{1}{2}$-$\frac{i}{2}$D.$\frac{1}{2}$+$\frac{i}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.太極圖是由黑白兩個(gè)魚(yú)形紋組成的圖案,俗稱(chēng)陰陽(yáng)魚(yú),太極圖展現(xiàn)了一種互相轉(zhuǎn)化,相對(duì)統(tǒng)一的和諧美.定義:能夠?qū)AO的周長(zhǎng)和面積同時(shí)等分成兩個(gè)部分的函數(shù)稱(chēng)為圓O的一個(gè)“太極函數(shù)”.則下列有關(guān)說(shuō)法中:
①對(duì)于圓O:x2+y2=1的所有非常數(shù)函數(shù)的太極函數(shù)中,一定不能為偶函數(shù);
②函數(shù)f(x)=sinx+1是圓O:x2+(y-1)2=1的一個(gè)太極函數(shù);
③存在圓O,使得f(x)=$\frac{{e}^{x}+1}{{e}^{x}-1}$是圓O的一個(gè)太極函數(shù);
④直線(xiàn)(m+1)x-(2m+1)y-1=0所對(duì)應(yīng)的函數(shù)一定是圓O:(x-2)2+(y-1)2=R2(R>0)的太極函數(shù);
⑤若函數(shù)f(x)=kx3-kx(k∈R)是圓O:x2+y2=1的太極函數(shù),則k∈(-2,2).
所有正確的是②④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,一架飛機(jī)以326km/h的速度,沿北偏東75°的航向從城市A出發(fā)向城市B飛行,18min以后,飛機(jī)由于天氣原因按命令改飛另一個(gè)城市C,問(wèn)收到命令時(shí)飛機(jī)應(yīng)該沿什么航向飛行,此時(shí)離城市C的距離是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知點(diǎn)N(1,3),若橢圓3x2+y2=λ上存在兩點(diǎn)A、B,使得$\overrightarrow{AN}=\overrightarrow{NB}$,且線(xiàn)段AB的垂直平分線(xiàn)與橢圓相交于C、D兩點(diǎn).
(1)求直線(xiàn)AB的方程;
(2)是否存在λ,使得A、B、C、D四點(diǎn)共圓?若存在,寫(xiě)出圓的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)f(x)=log3x的定義域?yàn)椋ā 。?table class="qanwser">A.(0,3}B.(0,1)C.(0,+∞)D.(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)命題p:2x2-7x+3≤0,命題q:x2-(2a+1)x+a(a+1)≤0,若命題p是命題q的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若存在正實(shí)數(shù)y,使得$\frac{xy}{y-x}$=$\frac{1}{5x+4y}$,則實(shí)數(shù)x的最大值為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下面是用三段論形式寫(xiě)出的演繹推理,其結(jié)論錯(cuò)誤的原因是
因?yàn)閷?duì)數(shù)函數(shù)y=logax(a>0且a≠1)在(0,+∞)上是增函數(shù),…大前提
而y=log${\;}_{\frac{1}{2}}$x是對(duì)數(shù)函數(shù),…小前提
所以y=log${\;}_{\frac{1}{2}}$x在(0,+∞)上是增函數(shù),…結(jié)論.
A.推理形式錯(cuò)誤B.小前提錯(cuò)誤C.大前提錯(cuò)誤D.以上都有可能

查看答案和解析>>

同步練習(xí)冊(cè)答案