【題目】已知橢圓的左、右焦點(diǎn)為.過(guò)作直線交橢圓,過(guò)作直線交橢圓,且垂直于點(diǎn).

(Ⅰ)證明:點(diǎn)在橢圓內(nèi)部;

(Ⅱ)求四邊形面積的最小值.

【答案】(1)見(jiàn)解析(2)

【解析】分析:

(Ⅰ)由可求得,從而橢圓標(biāo)準(zhǔn)方程,再由已知求出點(diǎn)軌跡方程為,而此圓在題設(shè)橢圓內(nèi)部,因此可證P點(diǎn)在橢圓內(nèi)部;

(Ⅱ)分類討論,當(dāng)斜率不存在時(shí),可求出四邊形ABCD的面積,同理當(dāng)斜率不0時(shí),

與剛才一樣,當(dāng)斜率存在且不為0時(shí),設(shè)方程為,這樣就有方程為,設(shè),利用圓錐曲線中的弦長(zhǎng)公式求得弦長(zhǎng),同理可得弦長(zhǎng),于是可得面積的函數(shù),利用函數(shù)的知識(shí)可求得的最小值,從而得出結(jié)論.

詳解:

(Ⅰ)由題意得,故,所以橢圓方程為.

由于分別為過(guò)兩焦點(diǎn), 且垂直相交于點(diǎn),則的軌跡為以為直徑的圓,

的軌跡方程為,

又因?yàn)?/span>,所以點(diǎn)在橢圓內(nèi)部.

(Ⅱ)①當(dāng)斜率不存在時(shí),直線的方程為, 此時(shí)直線的方程為,

此時(shí)四邊形的面積為.

同時(shí)當(dāng)斜率為0時(shí),此時(shí)的斜率不存在,易得.

②當(dāng)斜率存在且不為0時(shí),設(shè)直線方程為,直線方程為,

設(shè),聯(lián)立,消去整理得,

所以,

所以.

同理得

,則

即當(dāng),即時(shí),

綜合上式①②可得,當(dāng)時(shí), .

求最值的其它方法: ,令,得,

因?yàn)?/span>,當(dāng)時(shí), ,且是以為自變量的增函數(shù),所以.

綜上可知, . 即四邊形面積的最小值為.

方法二:①當(dāng)斜率為0,此時(shí)直線軸,此時(shí)四邊形的面積為.

同時(shí)當(dāng)斜率為0時(shí),此時(shí)軸,易得.

②當(dāng)斜率存在且不為0時(shí),設(shè)直線方程為,直線方程為,

設(shè),聯(lián)立,消去整理得,

所以,

所以.

同理得

下同解法一.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時(shí),求函數(shù)在區(qū)間上的值域;

(2)設(shè)函數(shù)的定義域?yàn)?/span>I,若,且,則稱為函數(shù)的“壹點(diǎn)”,已知在區(qū)間上有4個(gè)不同的“壹點(diǎn)”,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1C1C是邊長(zhǎng)為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.

(Ⅰ)求證:AA1⊥平面ABC;

(Ⅱ)求證二面角A1﹣BC1﹣B1的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著網(wǎng)絡(luò)的飛速發(fā)展,人們的生活發(fā)生了很大變化,其中無(wú)現(xiàn)金支付是一個(gè)顯著特征,某評(píng)估機(jī)構(gòu)對(duì)無(wú)現(xiàn)金支付的人群進(jìn)行網(wǎng)絡(luò)問(wèn)卷調(diào)查,并從參與調(diào)查的數(shù)萬(wàn)名受訪者中隨機(jī)選取了300人,把這300人分為三類,即使用支付寶用戶、使用微信用戶、使用銀行卡用戶,各類用戶的人數(shù)如圖所示,同時(shí)把這300人按年齡分為青年人組與中年人組,制成如圖所示的列聯(lián)表:

支付寶用戶

非支付寶用戶

合計(jì)

中老年

90

青年

120

合計(jì)

300

(1) 完成列聯(lián)表,并判斷是否有99%的把握認(rèn)為使用支付寶用戶與年齡有關(guān)系?

(2)把頻率作為概率,從所有無(wú)現(xiàn)金支付用戶中(人數(shù)很多)隨機(jī)抽取3人,用表示所選3人中使用支付寶用戶的人數(shù),求的分布列與數(shù)學(xué)期望.

附:

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若函數(shù)有三個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,要設(shè)計(jì)一張矩形廣告,該廣告含有大小相等的左右兩個(gè)矩形欄目(即圖中陰影部分),這兩欄的面積之和為18000cm2,四周空白的寬度為10cm,兩欄之間的中縫空白的寬度為5cm,怎樣確定廣告的高與寬的尺寸(單位:cm),能使矩形廣告面積最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)。

Ⅰ.求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;

Ⅱ.當(dāng)時(shí),方程恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;

Ⅲ.將函數(shù)的圖象向右平移個(gè)單位后所得函數(shù)的圖象關(guān)于原點(diǎn)中心對(duì)稱,求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某租賃公司擁有汽車100.當(dāng)每輛車的月租金為3000元時(shí),可全部租出.當(dāng)每輛車的月租金每增加元時(shí),未租出的車將會(huì)增加一輛.租出的車每輛每月需要維護(hù)費(fèi)元,未租出的車每輛每月需要維護(hù)費(fèi).

1)當(dāng)每輛車的月租金定為元時(shí),能租出多少輛車?

2)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】世界那么大,我想去看看,處在具有時(shí)尚文化代表的大學(xué)生們旅游動(dòng)機(jī)強(qiáng)烈,旅游可支配收入日益增多,可見(jiàn)大學(xué)生旅游是一個(gè)巨大的市場(chǎng).為了解大學(xué)生每年旅游消費(fèi)支出(單位:百元)的情況,相關(guān)部門隨機(jī)抽取了某大學(xué)的名學(xué)生進(jìn)行問(wèn)卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:

組別

頻數(shù)

(Ⅰ)求所得樣本的中位數(shù)(精確到百元);

(Ⅱ)根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為學(xué)生的旅游費(fèi)用支出服從正態(tài)分布,若該所大學(xué)共有學(xué)生人,試估計(jì)有多少位同學(xué)旅游費(fèi)用支出在元以上;

(Ⅲ)已知樣本數(shù)據(jù)中旅游費(fèi)用支出在范圍內(nèi)的名學(xué)生中有名女生, 名男生,現(xiàn)想選其中名學(xué)生回訪,記選出的男生人數(shù)為,求的分布列與數(shù)學(xué)期望.

附:若,則,

.

查看答案和解析>>

同步練習(xí)冊(cè)答案