己知函數(shù).

(I )若,,求的值;

(II)求函數(shù)的最大值和單調(diào)遞增區(qū)間.

 

【答案】

(Ⅰ)∵,   ∴.┄┄┄┄┄1分

又∵,

.┄┄┄┄┄┄┄┄3分

;┄┄┄┄┄┄6分

(Ⅱ)由題知

.┄┄┄┄┄┄┄10分

∴當(dāng)時(shí),.┄┄┄┄┄┄┄┄┄┄┄┄┄┄11分由解得,單調(diào)遞增區(qū)間為

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•成都模擬)己知函數(shù)h(x)=
x2-4x+m
x-2
(x∈R,且x>2)的反函數(shù)的圖象經(jīng)過點(diǎn)(4,3),將函數(shù)y=h(x)的圖象向左平移2個(gè)單位后得到函數(shù)y=f(x)的圖象.
(I )求函數(shù)f(x)的解析式;
(II)若g(x)=f(x)+
a
x
,g(x)在區(qū)間(0,3]上的值不小于8,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•唐山一模)己知函數(shù)f(x)=(mx+n)e-x在x=1處取得極值e-1
(I )求函數(shù)f(x)的解析式,并求f(x)的單調(diào)區(qū)間;
(II )當(dāng).x∈(a,+∞)時(shí),f(2x-a)+f(a)>2f(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•婺城區(qū)模擬)己知函數(shù)f(x)=
3
sinxcosx+co
s
2
 
x-
1
2
,△ABC
三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且f(B)=1.
(I)求角B的大。
(II)若a=
3
,b=1
,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)給出下列5個(gè)命題:
①0<a≤
1
5
是函數(shù)f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4]上為單調(diào)減函數(shù)的充要條件;
②如圖所示,“嫦娥探月衛(wèi)星”沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點(diǎn)P進(jìn)入以月球球心F為一個(gè)焦點(diǎn)的橢圓軌道I繞月飛行,之后衛(wèi)星在P點(diǎn)第二次變軌進(jìn)入仍以F為一個(gè)焦點(diǎn)的橢圓軌道II繞月飛行,最終衛(wèi)星在P點(diǎn)第三次變軌進(jìn)入以F為圓心的圓形軌道III繞月飛行,若用2Cl和2c2分別表示摘圓軌道I和II的焦距,用2a1和2a2分別表示橢圓軌道I和II的長軸的長,則有c1a2>a1c2
③函數(shù)y=f(x)與它的反函數(shù)y=f-1(x)的圖象若相交,則交點(diǎn)必在直線y=x上;
④己知函數(shù)f(x)=loga(1-ax)在(O,1)上滿足,f′(x)>0,貝U
1
1-a
>1+a>
2a
;
⑤函數(shù)f(x)=
tan2x+
(1+i)2
i
+1
tan2x+2
(x≠kπ+
π
2
),k∈Z,/為虛數(shù)單位)的最小值為2;
其中所有真命題的代號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5,不等式選講
己知函數(shù)f(x)=|2x+1|+|2x-3|
(I)若關(guān)于x的不等式f(x)<|1-2a|的解集不是空集,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若關(guān)于t的一元二次方程t2-2
6
t+f(m)=0
有實(shí)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案