【題目】如圖,已知城市周邊有兩個小鎮(zhèn)、,其中鄉(xiāng)鎮(zhèn)位于城市的正東方處,鄉(xiāng)鎮(zhèn)與城市相距夾角的正切值為2,為方便交通,現(xiàn)準備建設(shè)一條經(jīng)過城市的公路,使鄉(xiāng)鎮(zhèn)分別位于的兩側(cè),過建設(shè)兩條垂直的公路,分別與公路交匯于、兩點,以為原點,所在直線為軸,建立如圖所示的平面直角坐標系.

1)當兩個交匯點重合,試確定此時路段長度;

2)當,計算此時兩個交匯點、到城市的距離之比;

3)若要求兩個交匯點的距離不超過,求正切值的取值范圍.

【答案】1;(2;(3.

【解析】

1)先求出直線的斜率為1,點B的坐標為,再利用點到直線的距離為|BD|=;(2)設(shè)直線AB的斜率為,先求出再求出,即得;(3)先求出,再求出解不等式即得解.

1)當兩個交匯點、重合時,則AC,BD公路共線,

過點BBEAO,垂足為E, ,

所以AE=,所以|BE|=|AE|,

所以直線AB的傾斜角為,所以直線AB的斜率為,

所以直線的斜率為1,

因為點B的坐標為,所以|BD|=.

2)由題得A(21,0),設(shè)直線AB的斜率為

所以直線AB的方程為,

因為|AC|=|BD|,

所以.

由題得,

所以,

所以.

3)由題得

,

所以,

所以.

因為,

所以

解之得.

正切值的取值范圍為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】教材曾有介紹:圓上的點處的切線方程為.我們將其結(jié)論推廣:橢圓上的點處的切線方程為,在解本題時可以直接應用.已知,直線與橢圓有且只有一個公共點.

1)求的值

2)設(shè)為坐標原點,過橢圓上的兩點分別作該橢圓的兩條切線,且交于點.變化時,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】出租車幾何學是由十九世紀的赫爾曼·閔可夫斯基所創(chuàng)立的.在出租車幾何學中,點還是形如的有序?qū)崝?shù)對,直線還是滿足的所有組成的圖形,角度大小的定義也和原來一樣,對于直角坐標系內(nèi)任意兩點定義它們之間的一種距離直角距離):,請解決以下問題:

1)求線段,)上一點到原點距離;

2)求所有到定點距離均為2的動點圍成的圖形的周長;

3)在歐式幾何學中有如下三個與距離有關(guān)的正確結(jié)論:

①平面上任意三點A,B,C,;

②平面上不在一直線上任意三點A,BC,,則是以為直角三角形

③平面上存在兩個不同的定點A,B若動點P滿足,則動點P的軌跡是的垂直平分線

上述結(jié)論對于出租車幾何學中的直角距離是否還正確,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,圓,直線,直線過點,傾斜角為,以原點為極點,軸的正半軸為極軸建立極坐標系.

(1)寫出直線與圓的交點極坐標及直線的參數(shù)方程;

(2)設(shè)直線與圓交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是甲、乙、丙三個企業(yè)的產(chǎn)品成本(單位:萬元)及其構(gòu)成比例,則下列判斷正確的是(  )

A. 乙企業(yè)支付的工資所占成本的比重在三個企業(yè)中最大

B. 由于丙企業(yè)生產(chǎn)規(guī)模大,所以它的其他費用開支所占成本的比重也最大

C. 甲企業(yè)本著勤儉創(chuàng)業(yè)的原則,將其他費用支出降到了最低點

D. 乙企業(yè)用于工資和其他費用支出額比甲丙都高

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了打好精準扶貧攻堅戰(zhàn)某村扶貧書記打算帶領(lǐng)該村農(nóng)民種植新品種蔬菜,可選擇的種植量有三種:大量種植,適量種植,少量種植.根據(jù)收集到的市場信息,得到該地區(qū)該品種蔬菜年銷量頻率分布直方圖如圖,然后,該扶貧書記同時調(diào)查了同類其他地區(qū)農(nóng)民以往在各種情況下的平均收入如表1(表中收入單位:萬元):

1

銷量

種植量

大量

8

-4

適量

9

7

0

少量

4

4

2

但表格中有一格數(shù)據(jù)被墨跡污損,好在當時調(diào)查的數(shù)據(jù)頻數(shù)分布表還在,其中大量種植的100戶農(nóng)民在市場銷量好的情況下收入情況如表2

收入(萬元)

11

11.5

12

12.5

13

13.5

14

14.5

15

頻數(shù)(戶)

5

10

15

10

15

20

10

10

5

(Ⅰ)根據(jù)題中所給數(shù)據(jù),請估計在市場銷量好的情況下,大量種植的農(nóng)民每戶的預期收益.(用以往平均收入來估計);

(Ⅱ)若該地區(qū)年銷量在10千噸以下表示銷量差,在10千噸至30千噸之間表示銷量中,在30千噸以上表示銷量好,試根據(jù)頻率分布直方圖計算銷量分別為好、中、差的概率(以頻率代替概率);

(Ⅲ)如果你是這位扶貧書記,請根據(jù)(Ⅰ)(Ⅱ),從農(nóng)民預期收益的角度分析,你應該選擇哪一種種植量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式|2x-1|+|2x-2|x+3的解集是A

(Ⅰ)求集合A;

(Ⅱ)設(shè)xyA,對任意aR,求證:xy||x+a|-|y+a||)<x2+y2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)對任意的,成立,求實數(shù)的取值范圍;

(2)若,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】科研人員在對人體脂肪含量和年齡之間關(guān)系的研究中,獲得了一些年齡和脂肪含量的簡單隨機樣本數(shù)據(jù),如下表:

根據(jù)上表的數(shù)據(jù)得到如下的散點圖.

(1)根據(jù)上表中的樣本數(shù)據(jù)及其散點圖:

(i)求;

(ii)計算樣本相關(guān)系數(shù)(精確到0.01),并刻畫它們的相關(guān)程度.

(2)若y關(guān)于x的線性回歸方程為,求的值(精確到0.01),并根據(jù)回歸方程估計年齡為50歲時人體的脂肪含量。

附:參考數(shù)據(jù):

參考公式:相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘估計公式分別為

查看答案和解析>>

同步練習冊答案