()雙曲線-=1的焦點到漸近線的距離為(   )

(A)       (B)2         (C)         (D)1

A


解析:

雙曲線-=1的焦點(4,0)到漸近線的距離為,選A

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:
x2
9
-
y2
16
=1
的左、右焦 點分別為F1、F2,P為C的右支上一點,且|
PF2
|=|
F1F2
|,則△PF1F2
的面積等于
 

查看答案和解析>>

科目:高中數(shù)學 來源:全優(yōu)設計選修數(shù)學-1-1蘇教版 蘇教版 題型:022

若r1、r2分別表示雙曲線=1(a>0,b>0)上一點P(x0,y0)與兩個焦點F1(-c,0)、F2(c,0)間的距離,則r1=________;r2=________.(雙曲線的焦半徑公式)

查看答案和解析>>

科目:高中數(shù)學 來源:設計選修數(shù)學-1-1蘇教版 蘇教版 題型:022

若r1、r2分別表示雙曲線=1(a>0,b>0)上一點P(x0,y0)與兩個焦點F1(-c,0)、F2(c,0)間的距離,則r1=________,r2=________.(雙曲線的焦半徑公式)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,以A1、A2為焦 點的雙曲線E與半徑為c的圓O相交于C、DC1、D1,連接CC1OB交于點H,且有是圓O與坐標軸的交點,c為雙曲線的半焦距.

(1)當c=1時,求雙曲線E的方程;

(2)試證:對任意正實數(shù)c,雙曲線E的離心率為常數(shù);

(3)連接A1C,與雙曲線E交于點F,是否存在實數(shù),使恒成立?若存在,試求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,以A1、A2為焦 點的雙曲線E與半徑為c的圓O相交于C、DC1、D1,連接CC1OB交于點H,且有是圓O與坐標軸的交點,c為雙曲線的半焦距.

(1)當c=1時,求雙曲線E的方程;

(2)試證:對任意正實數(shù)c,雙曲線E的離心率為常數(shù);

(3)連接A1C,與雙曲線E交于點F,是否存在實數(shù),使恒成立?若存在,試求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案