【題目】已知函數(shù),.
()求的值域.
()若對(duì)于內(nèi)的所有實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1);(2)或.
【解析】
試題分析:
()由對(duì)勾函數(shù)的性質(zhì)可知在上是減函數(shù),在上是增函數(shù),據(jù)此計(jì)算可得的值域為.
()原問(wèn)題即,對(duì)于恒成立,
令,則,且的圖象開(kāi)口向上,對(duì)稱軸為.據(jù)此分類討論有:
①當(dāng)時(shí),,此時(shí);
②當(dāng)時(shí),,此時(shí)無(wú)解;
③當(dāng)時(shí),,此時(shí),
綜上可得實(shí)數(shù)的取值范圍為:或.
試題解析:
()∵在上是減函數(shù),在上是增函數(shù),
且,,,
∴的值域為.
()對(duì)于內(nèi)的所有實(shí)數(shù),不等式恒成立等價(jià)于,對(duì)于恒成立,
令,則,
∵的圖象為拋物線,開(kāi)口向上,對(duì)稱軸為.
①當(dāng)時(shí),在上單調(diào)遞增,
∴,
解得或,
∴;
②當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增,
∴,解得,
∴無(wú)解;
③當(dāng)時(shí),在上單調(diào)遞減,
∴,
解得或,
∴,
綜上所述,實(shí)數(shù)的取值范圍為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)曲線與直線有兩個(gè)相異的交點(diǎn)時(shí),實(shí)數(shù)的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,曲線上任意一點(diǎn)滿足;曲線上的點(diǎn)在軸的右邊且到的距離與它到軸的距離的差為1.
(1)求的方程;
(2)過(guò)的直線與相交于點(diǎn),直線分別與相交于點(diǎn)和.求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為加快新能源汽車產(chǎn)業(yè)發(fā)展,推進(jìn)節(jié)能減排,國(guó)家鼓勵(lì)消費(fèi)者購(gòu)買新能源汽車.某校研究性學(xué)習(xí)小組從汽車市場(chǎng)上隨機(jī)選取了M輛純電動(dòng)乘用車.根據(jù)其續(xù)駛里程R(單次充電后能行駛的最大里程)作出了頻率與頻數(shù)的統(tǒng)計(jì)表:
分組 | 頻數(shù) | 頻率 |
80≤R<150 | 10 | |
150≤R<250 | 30 | x |
R≥250 | y | z |
合計(jì) | M | 1 |
(1)求x,y,z,M的值;
(2)若用分層抽樣的方法從這M輛純電動(dòng)乘用車中抽取一個(gè)容量為6的樣本,從該樣本中任選2輛,求選到的2輛車?yán)m(xù)駛里程為150≤R<250的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知拋物線的焦點(diǎn)為,準(zhǔn)線與軸的交點(diǎn)為,過(guò)點(diǎn)的直線,拋物線相交于不同的兩點(diǎn).
(1)若,求直線的方程;
(2)若點(diǎn)在以為直徑的圓外部,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)點(diǎn)的動(dòng)直線與拋物線: 相交于, 兩點(diǎn).當(dāng)直線的斜率是時(shí), .
(1)求拋物線的方程;
(2)設(shè)線段的中垂線在軸上的截距為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)x,y滿足方程x2+y2-4x+1=0.
(1)求的最大值和最小值;
(2)求y-x的最大值和最小值;
(3)求x2+y2的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx.
(1)求函數(shù)f(x)的圖象在x=1處的切線方程;
(2)若函數(shù)y=f(x)+ 在[ ,+∞)上有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)k的取值范圍;
(3)是否存在實(shí)數(shù)k,使得對(duì)任意的x∈( ,+∞),都有函數(shù)y=f(x)+ 的圖象在g(x)= 的圖象的下方;若存在,請(qǐng)求出最大整數(shù)k的值,若不存在,請(qǐng)說(shuō)明理由(參考數(shù)據(jù):ln2=0.6931, =1.6487).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(logax)= ,(0<a<1)
(1)求f(x)的表達(dá)式,并判斷f(x)的奇偶性;
(2)判斷f(x)的單調(diào)性;
(3)對(duì)于f(x),當(dāng)x∈(﹣1,1)時(shí),恒有f(1﹣m)+f(1﹣m2)<0,求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com