如圖,已知AE⊥平面BCE,EO⊥平面ABC于O,求證:AO⊥BC.

答案:
解析:

證明:因為AE⊥平面BCE,BC平面BCE,所以AE⊥BC.因為EO⊥平面ABC,BC平面ABC,所以EO⊥BC.又因為EO∩AE=E,所以BC⊥平面AEO.而AO平面AEO,所以AO⊥BC.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•寶雞模擬)如圖,已知PA⊥平面ABC,且PA=
2
,等腰直角三角形ABC中,AB=BC=1,AB⊥BC,AD⊥PB于D,AE⊥PC于E.
(1)求證:PC⊥平面ADE;
(2)求點D到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•寶雞模擬)如圖,已知PA⊥平面ABC,且PA=
2
,等腰直角三角形ABC中,AB=BC=1,AB⊥BC,AD⊥PB于D,AE⊥PC于E.
(1)求證:PC⊥平面ADE;
(2)求直線AB與平面ADE所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•黃岡模擬)如圖,已知BD⊥平面ABC,AE∥BD,△ABC是等腰直角三角形,∠C=90°AB=BD=2AE,則面CDE與面ABC所成的角的正切值為
10
2
10
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:陜西省模擬題 題型:解答題

如圖,已知PA⊥平面ABC,且,等腰直角三角形ABC中,AB=BC=1,AB⊥BC,AD⊥PB于D,AE⊥PC于E。
(1)求證:PC⊥平面ADE;
(2)求直線AB與平面ADE所成角的大小。

查看答案和解析>>

同步練習(xí)冊答案