數(shù)列的通項,第2項是最小項,則的取值范圍是    
[2,6]

試題分析:∵第2項是最小項,∴,∴,∴,即的取值范圍是[2,6]
點評:熟練運用數(shù)列的單調(diào)性列出關(guān)于c、d的不等式是求解此類問題的關(guān)鍵,屬基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知等差數(shù)列的前n項和為,且,則=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊藏了許多優(yōu)美的規(guī)律。下圖是一個11階楊輝三角:
(1)求第20行中從左到右的第4個數(shù);
(2)若第n行中從左到右第14個數(shù)與第15個數(shù)的比為,求n的值;
(3)求n階(包括0階)楊輝三角的所有數(shù)的和;
(4)在第3斜列中,前5個數(shù)依次為1,3,6,10,15;第4斜列中,第5個數(shù)為35。顯然,1+3+6+10+15=35。事實上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個數(shù)之和,一定等于第m+1斜列中第k個數(shù)。試用含有m、k的數(shù)學(xué)公式表示上述結(jié)論,并給予證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),為正整數(shù).
(Ⅰ)求的值;
(Ⅱ)數(shù)列的通項公式為(),求數(shù)列的前項和;
(Ⅲ)設(shè)數(shù)列滿足:,,設(shè),若(Ⅱ)中的滿足:對任意不小于3的正整數(shù)n,恒成立,試求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等差數(shù)列中,有,則此數(shù)列的前13項之和為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列中,,前項的和為,對任意的,,,總成等差數(shù)列.
(1)求的值;
(2)求通項;
(3)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)各項均為正實數(shù)的數(shù)列的前項和為,且滿足).
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè)數(shù)列的通項公式為),若,)成等差數(shù)列,求的值;
(Ⅲ)證明:存在無窮多個三邊成等比數(shù)列且互不相似的三角形,其三邊長為數(shù)列中的三項,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列中,,且為數(shù)列的前項和,則使的最小值為(   )
A.10B.11C.20D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等差數(shù)列項和,,則公差d的值為  (   )
A.2B.3C.4D.-3

查看答案和解析>>

同步練習(xí)冊答案