設(shè)各項(xiàng)均為正實(shí)數(shù)的數(shù)列的前項(xiàng)和為,且滿(mǎn)足).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列的通項(xiàng)公式為),若,,)成等差數(shù)列,求的值;
(Ⅲ)證明:存在無(wú)窮多個(gè)三邊成等比數(shù)列且互不相似的三角形,其三邊長(zhǎng)為數(shù)列中的三項(xiàng),,
(Ⅰ);(Ⅱ),,
(Ⅲ)作如下構(gòu)造:,,其中,它們依次為數(shù)列中第項(xiàng),第項(xiàng),第,顯然它們成等比數(shù)列,且,所以它們能組成三角形.
的任意性,知這樣的三角形有無(wú)窮多個(gè).
用反證法證明其中任意兩個(gè)不相似

試題分析:(Ⅰ)由題意,①,當(dāng)時(shí),有②,
②-①,得,各項(xiàng)為正,,
從而,故成公差2的等差數(shù)列.又時(shí),,解得.故.                                4分
(Ⅱ),要使,,成等差數(shù)列,須,
,整理得,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902847337.png" style="vertical-align:middle;" />,為正整數(shù),只能取2,3,5.故,.                  10分
(Ⅲ)作如下構(gòu)造:,,其中,它們依次為數(shù)列中第項(xiàng),第項(xiàng),第,顯然它們成等比數(shù)列,且,所以它們能組成三角形.
的任意性,知這樣的三角形有無(wú)窮多個(gè).
下面用反證法證明其中任意兩個(gè)不相似:若,且,則,整理得,所以,這與矛盾,因此,任意兩個(gè)三角形不相似.故原命題正確.           16分
點(diǎn)評(píng):基礎(chǔ)題,首先利用的關(guān)系,確定得到的通項(xiàng)公式,進(jìn)一步研究中項(xiàng)的關(guān)系。為證明,能構(gòu)成三角形,在明確表達(dá)式的基礎(chǔ)上,應(yīng)用了反證法。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{}滿(mǎn)足=1,=,(1)計(jì)算,的值;(2)歸納推測(cè),并用數(shù)學(xué)歸納法證明你的推測(cè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

數(shù)列的通項(xiàng),第2項(xiàng)是最小項(xiàng),則的取值范圍是    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

是等差數(shù)列,首項(xiàng),則使前n項(xiàng)和成立的最大自然數(shù)n是(  )
A.4005B.4006 C.4007D.4008

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

各項(xiàng)都為正數(shù)的等比數(shù)列的公比成等差數(shù)列,則 (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列的前項(xiàng)和為,則數(shù)列的前100項(xiàng)和為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列 的前項(xiàng)和為,設(shè),且.
(1)證明{}是等比數(shù)列;
(2)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知等差數(shù)列的前項(xiàng)和為,若,且三點(diǎn)共線(xiàn)(該直線(xiàn)不過(guò)點(diǎn)),則_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列的相鄰兩項(xiàng)是關(guān)于的方程的兩根,且.
(Ⅰ)求證:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和;
(Ⅲ)設(shè)函數(shù)對(duì)任意的都成立,求的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案