A. | 3 | B. | 2 | C. | 1 | D. | 0 |
分析 根據(jù)圓的性質(zhì)和向量的平行四邊形法則可求出|$\overrightarrow{CA}$|和向量$\overrightarrow{CA}$,$\overrightarrow{CB}$的夾角.結(jié)合向量數(shù)量積的定義進(jìn)行求解即可.
解答 解作直徑AD,連結(jié)BD,CD.則2$\overrightarrow{OA}=\overrightarrow{DA}$.
∵2$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{0}$,
∴四邊形ABDC是平行四邊形,
∵AD是直徑,∴∠ACD=90°.
∴四邊形ABDC是矩形,
∵|$\overrightarrow{OA}$|=|$\overrightarrow{AB}$|=1,∴△ABO是等邊三角形,
∴∠ACB=$\frac{1}{2}$∠AOB=30°,AC=$\sqrt{B{C}^{2}-A{B}^{2}}=\sqrt{3}$.
∴$\overline{CA}•\overline{CB}$=|$\overrightarrow{CA}$||$\overrightarrow{CB}$|cos30°=$\sqrt{3}×2×\frac{\sqrt{3}}{2}$=3.
故選:A.
點(diǎn)評 本題考查了平面向量的數(shù)量積運(yùn)算,利用圓的性質(zhì)得出AC的長與向量的夾角是關(guān)鍵.注意要利用數(shù)形結(jié)合比較方便.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{12}$ | B. | $\frac{7}{12}$ | C. | $\frac{11}{12}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2,3,4} | B. | {2,4} | C. | {2,3,4} | D. | {x|1<x≤4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 12 | C. | 15 | D. | 18 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com