函數(shù)f(x)=x3+ax2+ax(x∈R)不存在極值點(diǎn),則a的取值范圍是______.
∵函數(shù)f(x)=x3+ax2+ax(x∈R),
∴f′(x)=3x2+2ax+a,
∵函數(shù)f(x)=x3+ax2+ax(x∈R)不存在極值,且f′(x)的圖象開(kāi)口向上,
∴f′(x)≥0對(duì)x∈R恒成立,
∴△=4a2-12a≤0,
解得0≤a≤3,
∴a的取值范圍是0≤a≤3.
故答案為:0≤a≤3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=
lnx+k
ex
(k為常數(shù),e=2.71828…是自然對(duì)數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與x軸平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=(x2+x)f′(x),其中f′(x)是f(x)的導(dǎo)函數(shù).證明:對(duì)任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)曲線f(x)=
1
3
x3-
a
2
x2+1
(其中a>0)在點(diǎn)(x1,f(x1))及(x2,f(x2))處的切線都過(guò)點(diǎn)(0,2).證明:當(dāng)x1≠x2時(shí),f′(x1)≠f′(x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知某質(zhì)點(diǎn)的運(yùn)動(dòng)方程為s(t)=t3+bt2+ct+d,如圖是其運(yùn)動(dòng)軌跡的一部分,若t∈[
1
2
,4]時(shí),s(t)<3d2恒成立,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某同學(xué)對(duì)教材《選修2-2》上所研究函數(shù)f(x)=
1
3
x3-4x+4的性質(zhì)進(jìn)行變式研究,并結(jié)合TI-Nspire圖形計(jì)算器作圖進(jìn)行直觀驗(yàn)證(如圖所示),根據(jù)你所學(xué)的知識(shí),指出下列錯(cuò)誤的結(jié)論是( 。
A.f(x)的極大值為f(-2)=
28
3
B.f(x)的極小值為f(2)=-
4
3
C.f(x)的單調(diào)遞減區(qū)間為(-2,2)
D.f(x)在區(qū)間[-3,3]上的最大值為f(-3)=7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

lim
△x→0
f(x0+2△x)-f(x0)
△x
=1,則f′(x0)等于( 。
A.2B.-2C.
1
2
D.-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)函數(shù)f(x)定義在(0,+∞)上,f(1)=0,導(dǎo)函數(shù)f′(x)=
1
x
,g(x)=f(x)+f′(x).則g(x)的最小值是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)f(x)=x3+3bx2+3cx在兩個(gè)極值點(diǎn)x1、x2,且x1∈[-1,0],x2∈[1,2].
(1)求b、c滿足的約束條件,并在下面的坐標(biāo)平面內(nèi),畫出滿足這些條件的點(diǎn)(b,c)的區(qū)域;
(2)證明:-10≤f(x2)≤-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對(duì)任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線lAB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱直線AB存在“中值伴侶切線”.試問(wèn):當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案