(本題滿分12分)
已知函數(shù)
(1)若函數(shù)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(2)當a>0時,試討論這兩個函數(shù)圖象的交點個數(shù).
(1)a>1
(2)有且僅有兩個交點
(1)
若使存在單調(diào)遞減區(qū)間,則上有解.……1分
而當
問題轉(zhuǎn)化為上有解,故a大于函數(shù)上的最小值.
………………3分
上的最小值為-1,所以a>1.……4分
(2)令
函數(shù)的交點個數(shù)即為函數(shù)的零點的個數(shù).……5分

解得
隨著x的變化,的變化情況如下表:





-
0
+

單調(diào)遞減
極(最)小值2+lna
單調(diào)遞增
                                                                     …………7分
①當恒大于0,函數(shù)無零點.……8分
②當由上表,函數(shù)有且僅有一個零點.
……9分
顯然
內(nèi)單調(diào)遞減,
所以內(nèi)有且僅有一個零點                                                      …………10分

由指數(shù)函數(shù)與冪函數(shù)增長速度的快慢,知存在
使得
從而
因而
內(nèi)單調(diào)遞增,上的圖象是連續(xù)不斷的曲線,
所以內(nèi)有且僅有一個零點.  …………11分
因此,有且僅有兩個零點.
綜上,的圖象無交點;當的圖象有且僅有一個交點;的圖像有且僅有兩個交點.……12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的最大值是(   )
A.1B.C.0D.-1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設函數(shù),其中表示不超過的最大整數(shù),如,若有三個不同的根,則實數(shù)的取值范圍是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)在區(qū)間[-1,1]上的最大值的最小值是  (   )
A.B.C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)求的單調(diào)區(qū)間;
(2)如果在區(qū)間上的最小值為,求實數(shù)以及在該區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果f(x)=mx2+(m-1)x+1在區(qū)間上為減函數(shù),則m的取值范圍(    )
A.(0, B.C.D.(0,

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(1)設函數(shù)處的切線為,若與圓相切,求a的值
(2)求函數(shù)的單調(diào)區(qū)間

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

 函數(shù)的圖像關于原點對稱,且,則
A.B.
C.D.的大小關系不確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)是R上的偶函數(shù),且在區(qū)間上是增函數(shù).令
,則
A.B.C.D.

查看答案和解析>>

同步練習冊答案