求cos10°cos30°cos50°cos70°的值.

答案:
解析:

  點(diǎn)評(píng):在應(yīng)用結(jié)合律將積化和差進(jìn)行分組時(shí)的基本指導(dǎo)思想與上例所說(shuō)的原則一樣.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列各式的值
(1)(cos
π
12
+sin
π
12
)(cos
π
12
-sin
π
12
)
=
 
;
(2)cos200°cos80°+cos110°cos10°=
 
;
(3)tan10°tan20°+tan20°tan60°+tan60°tan10°=
 
;
(4)cos
π
7
cos
7
cos
3
7
π
=
 
;
(5)sin20°sin40°sin80°=
 
;
(6)cos20°+cos100°+cos140°=
 
;
(7)(1+tan1°)(1+tan2°)(1+tan3°)…(1+tan44°)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)化簡(jiǎn)
1-2sin10°cos10°
sin170°-
1-sin2170°
;
(2)若cosθ=
7
4
,求
sin(θ-5π)cos(-
π
2
-θ)cos(8π-θ)
sin(θ-
2
)sin(-θ-4π)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)求值
tan70°cos10°(
3
tan20°-1)

②已知sin(α+
π
3
)+sinα=-
4
3
5
,(-
π
2
<α<0)
,求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

化簡(jiǎn)求值
tan70°cos10°(
3
tan20°-1)

②已知sin(α+
π
3
)+sinα=-
4
3
5
(-
π
2
<α<0)
,求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)化簡(jiǎn)
1-2sin10°cos10°
sin170°-
1-sin2170°
;
(2)若cosθ=
7
4
,求
sin(θ-5π)cos(-
π
2
-θ)cos(8π-θ)
sin(θ-
2
)sin(-θ-4π)
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案