【題目】某語文報社為研究學(xué)生課外閱讀時間與語文考試中的作文分?jǐn)?shù)的關(guān)系,隨機調(diào)查了本市某中學(xué)高三文科班名學(xué)生每周課外閱讀時間(單位:小時)與高三下學(xué)期期末考試中語文作文分?jǐn)?shù),數(shù)據(jù)如下表:

1

2

3

4

5

6

38

40

43

45

50

54

1)根據(jù)上述數(shù)據(jù),求出高三學(xué)生語文作文分?jǐn)?shù)與該學(xué)生每周課外閱讀時間的線性回歸方程,并預(yù)測某學(xué)生每周課外閱讀時間為小時時其語文作文成績;

2)從這人中任選人,這人中至少有人課外閱讀時間不低于小時的概率.

參考公式:,其中,

參考數(shù)據(jù):,

【答案】1;預(yù)測某學(xué)生每周課外閱讀時間為小時時其語文作文成績?yōu)?/span>2

【解析】

(1)根據(jù)所給的公式計算對應(yīng)的量,,,再代入公式求解可求得線性回歸方程.再令即可求得預(yù)測值.

(2) 設(shè)這人閱讀時間依次為、、、的同學(xué)分別為、、、、、,再枚舉出所有可能的情況,分析其中至少有人課外閱讀時間不低于小時的情況數(shù),再根據(jù)古典概型的公式求解概率即可.

解:(1)根據(jù)表中數(shù)據(jù),計算,,

.

,

關(guān)于的線性回歸方程為:,

當(dāng)時,.

預(yù)測某學(xué)生每周課外閱讀時間為小時時其語文作文成績?yōu)?/span>.

2)設(shè)這人閱讀時間依次為、、的同學(xué)分別為、、、、,

從中任選人,基本事件是、、、、、、、、、、種,

其中至少人課外閱讀時間不低于小時的事件是、、、、、、種,

故所求的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形, 平面, 的中點.

(1)證明: 平面

(2)已知 , 求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中

)已知函數(shù)為偶函數(shù),求的值;

)若,證明:當(dāng)時,;

)若在區(qū)間內(nèi)有兩個不同的零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,且在區(qū)間上是增函數(shù).

1)求實數(shù)的值組成的集合

2)設(shè)函數(shù)的兩個極值點為、,試問:是否存在實數(shù),使得不等式對任意恒成立?若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程.

(Ⅰ)求直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(Ⅱ)若直線與曲線交于,兩點,求的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,角A,B,C的對邊分別為a,b,c,且2ccosB2a+b

1)求角C的大;

2)若ABC的面積等于,求ab的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為:為參數(shù)),的參數(shù)方程為:為參數(shù)).

1)化的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;

2)若直線的極坐標(biāo)方程為:,曲線上的點對應(yīng)的參數(shù),曲線上的點對應(yīng)的參數(shù),求的中點到直線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,ABCD為菱形,平面ABCD,連接ACBD交于點O,,E是棱PC上的動點,連接DE.

1)求證:平面平面;

2)當(dāng)面積的最小值是4時,求此時點E到底面ABCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體的棱長為1,P是空間中任意一點,下列正確命題的個數(shù)是(

①若P為棱中點,則異面直線APCD所成角的正切值為

②若P在線段上運動,則的最小值為

③若P在半圓弧CD上運動,當(dāng)三棱錐的體積最大時,三棱錐外接球的表面積為

④若過點P的平面與正方體每條棱所成角相等,則截此正方體所得截面面積的最大值為

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案