若雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)上不存在點P使得右焦點F關(guān)于直線OP(O為雙曲線的中心)的對稱點在y軸上,則該雙曲線離心率的取值范圍為
(1,
2
]
(1,
2
]
分析:這里給出否定形式,直接思考比較困難,按照正難則反,考慮存在點P使得右焦點F關(guān)于直線OP(O為雙曲線的中心)的對稱點在y軸上,因此只要在這個雙曲線上存在點P使得OP斜率為1即可.
解答:解:按照正難則反,考慮存在點P使得右焦點F關(guān)于直線OP(O為雙曲線的中心)的對稱點在y軸上,因此只要在這個雙曲線上存在點P使得OP斜率為1即可,所以只要漸近線y=
b
a
x
的斜率大于1,
所以
b
a
>1,所以離心率e>
2
,
∴其在大于1的補集為(1,
2
],
故答案為:(1,
2
]
點評:該題通過否定形式考查反證法的思想,又考查數(shù)形結(jié)合、雙曲線的方程及其幾何性質(zhì),是中檔題
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1
的漸近線方程為y=±
3
2
x
,則其離心率為( 。
A、
13
2
B、
13
3
C、
2
13
3
13
D、
13
2
13
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線方程為y=±
3
2
x,則雙曲線的離心率為( 。
A、
7
2
B、
3
2
C、
1
2
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
5
,則雙曲線的一條漸近線方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若雙曲線
x2
a2
-
y2
8
=1
的一個焦點為(4,0),則雙曲線的漸近線方程為
y=±x
y=±x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線與拋物線y=x2+2相切,則此雙曲線的漸近線方程為( 。

查看答案和解析>>

同步練習冊答案