分析:(Ⅰ)求導(dǎo)函數(shù),利用an+1=f'(an+1),可用an表示an+1;
(Ⅱ)先通過特殊性,猜想0<a1<2,再用數(shù)學(xué)歸納法進行證明.
解答:解:(Ⅰ)求導(dǎo)函數(shù)
f′(x)=+,
∵a
n+1=f'(a
n+1),∴
an+1=+.
(Ⅱ)
a3=+,
a4=+=+=+,
令a
4<a
2,得
2-3a2-2>0,∴(2a
2+1)(a
2-2)>0,
∵a
2>0,∴a
2>2,則
+>2,得0<a
1<2.
以下證明:當(dāng)0<a
1<2時,a
2n+2<a
2n,且a
2n>2.
①當(dāng)n=1時,0<a
1<2,則
a2=+>+=2,
a4-a2=+-a2=+-a2=-a2==
-<0,∴a
4<a
2.
②假設(shè)n=k(k∈N
*)時命題成立,即a
2k+2<a
2k,且a
2k>2,
當(dāng)n=k+1時,
a2k+2=+>+=2,
a2k+2=+=+>2a2k+4-a2k+2=-a2k+2=-3(a2k+2+1)(a2k+2-2) |
2(3a2k+2+2) |
<0∴a
2k+4<a
2k+2,即n=k+1時命題成立,
綜合①②,對于任意n∈N
*,a
2n+2<a
2n,且a
2n>2,從而數(shù)列{b
n}是遞減數(shù)列.
∴a
1的取值范圍為(0,2).
說明:數(shù)學(xué)歸納法第②步也可用下面方法證明:
a2k+4-a2k+2=-=4(a2k+2-a2k) |
(3a2k+2+2)(3a2k+2) |
<0 點評:本題考查數(shù)列遞推式,考查求參數(shù)的范圍,解題的關(guān)鍵是先猜后證,屬于中檔題.