已知函數(shù).
(Ⅰ)求函數(shù)的最小正周期及最小值;
(Ⅱ)若為銳角,且,求的值.
(Ⅰ),;(Ⅱ).
解析試題分析:(Ⅰ)先由三角函數(shù)的和角公式以及二倍角公式將所給函數(shù)化簡整理得到:,再由求函數(shù)的最小正周期,根據(jù)三角函數(shù)的圖像與性質(zhì)求函數(shù)的最小值;(Ⅱ)先將代入函數(shù),根據(jù)求得,先判斷的取值范圍,在結(jié)合三角函數(shù)的圖像與性質(zhì)判斷時(shí),對應(yīng)的的取值,然后解方程求未知數(shù).
試題解析:
. 5分
(Ⅰ)函數(shù)的最小正周期為,
函數(shù)的最小值為. 7分
(Ⅱ)由得.
所以. 9分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8b/b/dhfti.png" style="vertical-align:middle;" />,所以, 10分
所以.
所以. 13分
考點(diǎn):1.三角函數(shù)的和角公式;2.二倍角公式;3.三角函數(shù)的圖像與性質(zhì);4.三角函數(shù)的最小正周期
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知點(diǎn),,點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)在第二象限,且,記.
(1)求的值;(2)若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中角的終邊經(jīng)過點(diǎn),且.
(1)求的值;
(2)求在上的單調(diào)減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(1)求的單調(diào)減區(qū)間;(2)在銳角三角形ABC中,A、B、C的對邊且滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)的最大值為,最小值為,其中.
(1)求、的值(用表示);
(2)已知角的頂點(diǎn)與平面直角坐標(biāo)系中的原點(diǎn)重合,始邊與軸的正半軸重合,終邊經(jīng)過點(diǎn).求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com