已知數(shù)列{an}中,a1=1,當n≥2時,an=2an-1+1,依次計算a2,a3,a4后,猜想an的一個表達式是( 。
分析:由遞推式可求得數(shù)列的前4項,從而可猜想an,通過構(gòu)造等比數(shù)列可求證.
解答:解:由a1=1,當n≥2時,an=2an-1+1,得
a2=2a1+1=2×1+1=3,a3=2a2+1=2×3+1=7,a4=2a3+1=2×7+1=15,
猜想an=2n-1,證明如下:
由an=2an-1+1,得an+1=2(an-1+1)(n≥2),
∴{an+1}是以2為首項,2為公比的等比數(shù)列,
則an+1=2n,∴an=2n-1,
故選C.
點評:本題考查由數(shù)列遞推式求數(shù)列通項公式,考查學生觀察分析能力及推理論證能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,則
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an
1+2an
,則{an}的通項公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{
2n
an
}
的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=
1
2
,Sn
為數(shù)列的前n項和,且Sn
1
an
的一個等比中項為n(n∈N*
),則
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,2nan+1=(n+1)an,則數(shù)列{an}的通項公式為( 。
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步練習冊答案