【題目】已知a>0,b>0,c>0,函數(shù)f(x)=|x+a|﹣|x﹣b|+c的最大值為10.
(1)求a+b+c的值;
(2)求 (a﹣1)2+(b﹣2)2+(c﹣3)2的最小值,并求出此時a、b、c的值.

【答案】
(1)解:f(x)=|x+a|﹣|x﹣b|+c≤|b+a|+c,當(dāng)且僅當(dāng)x≥b時等號成立,

∵a>0,b>0,∴f(x)的最大值為a+b+c.

又已知f(x)的最大值為10,所以a+b+c=10.


(2)由(1)知a+b+c=10,由柯西不等式得[ (a﹣1)2+(b﹣2)2+(c﹣3)2](22+12+12)≥(a+b+c﹣6)2=16,

(a﹣1)2+(b﹣2)2+(c﹣3)2

當(dāng)且僅當(dāng) (a﹣1)=b﹣2=c﹣3,即a= ,b= ,c= 時等號成立.


【解析】(1)利用絕對值不等式,求出f(x)的最大值為a+b+c,即可求a+b+c的值;(2)利用柯西不等式,即可得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按200元/次收費,并注冊成為會員,對會員逐次消費給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如表:

消費次第

第1次

第2次

第3次

第4次

≥5次

收費比例

1

0.95

0.90

0.85

0.80

該公司從注冊的會員中,隨機抽取了100位進(jìn)行統(tǒng)計,得到統(tǒng)計數(shù)據(jù)如表:

消費次第

第1次

第2次

第3次

第4次

第5次

頻數(shù)

60

20

10

5

5

假設(shè)汽車美容一次,公司成本為150元,根據(jù)所給數(shù)據(jù),解答下列問題:
(1)估計該公司一位會員至少消費兩次的概率;
(2)某會員僅消費兩次,求這兩次消費中,公司獲得的平均利潤;
(3)設(shè)該公司從至少消費兩次,求這的顧客消費次數(shù)用分層抽樣方法抽出8人,再從這8人中抽出2人發(fā)放紀(jì)念品,求抽出2人中恰有1人消費兩次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)經(jīng)過點( ,1),以原點為圓心,橢圓短半軸長為半徑的圓經(jīng)過橢圓的焦點.
(1)求橢圓C的方程;
(2)設(shè)過點(﹣1,0)的直線l與橢圓C相交于A、B兩點,試問在x軸上是否存在一個定點M,使得 恒為定值?若存在,求出該定值及點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+1|+|x﹣3|,g(x)=a﹣|x﹣2|. (Ⅰ)若關(guān)于x的不等式f(x)<g(x)有解,求實數(shù)a的取值范圍;
(Ⅱ)若關(guān)于x的不等式f(x)<g(x)的解集為 ,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某手機賣場對市民進(jìn)行國產(chǎn)手機認(rèn)可度的調(diào)查,隨機抽取100名市民,按年齡(單位:歲)進(jìn)行統(tǒng)計的頻數(shù)分布表和頻率分布直方圖如下:

分組(歲)

頻數(shù)

[25,30)

x

[30,35)

y

[35,40)

35

[40,45)

30

[45,50]

10

合計

100

(Ⅰ)求頻率分布表中x、y的值,并補全頻率分布直方圖;
(Ⅱ)在抽取的這100名市民中,按年齡進(jìn)行分層抽樣,抽取20人參加國產(chǎn)手機用戶體驗問卷調(diào)查,現(xiàn)從這20人重隨機抽取2人各贈送精美禮品一份,設(shè)這2名市民中年齡在[35,40)內(nèi)的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列共有四個命題: ⑴命題“ ”的否定是“x∈R,x2+1<3x”;
⑵在回歸分析中,相關(guān)指數(shù)R2為0.96的模型比R2為0.84的模型擬合效果好;
⑶a,b∈R, ,則p是q的充分不必要條件;
⑷已知冪函數(shù)f(x)=(m2﹣3m+3)xm為偶函數(shù),則f(﹣2)=4.
其中正確的序號為 . (寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) . (Ⅰ)證明:f(x)≥5;
(Ⅱ)若f(1)<6成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}中,已知a3=5,且a1 , a2 , a5為遞增的等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}的通項公式 (k∈N*),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)今,手機已經(jīng)成為人們不可或缺的交流工具,人們常常把喜歡玩手機的人冠上了名號“低頭族”,手機已經(jīng)嚴(yán)重影響了人們的生活,一媒體為調(diào)查市民對低頭族的認(rèn)識,從某社區(qū)的500名市民中,隨機抽取n名市民,按年齡情況進(jìn)行統(tǒng)計的得到頻率分布表和頻率分布直方圖如下:

組數(shù)

分組(單位:歲)

頻數(shù)

頻率

1

[20,25)

5

0.05

2

[25,30)

20

0.20

3

[30,35)

a

0.35

4

[35,40)

30

b

5

[40,45]

10

0.10

合計

n

1.00


(1)求出表中的a,b,n的值,并補全頻率分布直方圖;
(2)媒體記者為了做好調(diào)查工作,決定從所隨機抽取的市民中按年齡采用分層抽樣的方法抽取20名接受采訪,再從抽出的這20名中年齡在[30,40)的選取2名擔(dān)任主要發(fā)言人.記這2名主要發(fā)言人年齡在[35,40)的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案