精英家教網 > 高中數學 > 題目詳情

【題目】下列共有四個命題: ⑴命題“ ”的否定是“x∈R,x2+1<3x”;
⑵在回歸分析中,相關指數R2為0.96的模型比R2為0.84的模型擬合效果好;
⑶a,b∈R, ,則p是q的充分不必要條件;
⑷已知冪函數f(x)=(m2﹣3m+3)xm為偶函數,則f(﹣2)=4.
其中正確的序號為 . (寫出所有正確命題的序號)

【答案】(2),(4)
【解析】解:(1)命題“ ”的否定是“x∈R,x2+1≤3x”,故錯誤;(2)在回歸分析中,由定義可知,相關指數絕對值越接近1,相關性越強,相關指數R2為0.96的模型比R2為0.84的模型擬合效果好,故正確;(3)a,b∈R, ,則p是q的必要不充分條件,故錯誤;(4)已知冪函數f(x)=(m2﹣3m+3)xm為偶函數, ∴m2﹣3m+3=1,
∴m=2,或m=1(舍去)
則f(﹣2)=4.故正確.
所以答案是(2),(4).
【考點精析】掌握命題的真假判斷與應用是解答本題的根本,需要知道兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線l的參數方程為 (t為參數),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為3ρ2cos2θ+4ρ2sin2θ=12. (Ⅰ)寫出直線l的極坐標方程與曲線C的直角坐標方程;
(Ⅱ)已知與直線l平行的直線l'過點M(1,0),且與曲線C交于A,B兩點,試求|AB|.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若f(x)為奇函數,且x0是y=f(x)﹣ex的一個零點,則下列函數中,﹣x0一定是其零點的函數是(
A.y=f(﹣x)ex﹣1
B.y=f(x)ex+1
C.y=f(x)ex﹣1
D.y=f(﹣x)ex+1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,網格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體外接球的表面積為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a>0,b>0,c>0,函數f(x)=|x+a|﹣|x﹣b|+c的最大值為10.
(1)求a+b+c的值;
(2)求 (a﹣1)2+(b﹣2)2+(c﹣3)2的最小值,并求出此時a、b、c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線G:y2=2px(p>0),過焦點F的動直線l與拋物線交于A,B兩點,線段AB的中點為M.
(Ⅰ)當直線l的傾斜角為 時,|AB|=16.求拋物線G的方程;
(Ⅱ)對于(Ⅰ)問中的拋物線G,是否存在x軸上一定點N,使得|AB|﹣2|MN|為定值,若存在求出點N的坐標及定值,若不存在說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知P是橢圓 上任意一點,過橢圓的右頂點A和上頂點B分別作x軸和y軸的垂線,兩垂線交于點C,過P作AC,BC的平行線交BC于點M,交AC于點N,交AB于點D,E,矩形PMCN的面積是S1 , 三角形PDE的面積是S2 , 則 =( )
A.2
B.1
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數方程為 (t為參數,α∈[0,π)).以原點O為極點,以x軸正半軸為極軸,與直角坐標系xOy取相同的長度單位,建立極坐標系.設曲線C的極坐標方程為ρcos2θ=4sinθ. (Ⅰ)設M(x,y)為曲線C上任意一點,求x+y的取值范圍;
(Ⅱ)若直線l與曲線C交于兩點A,B,求|AB|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=|2x+3|+|x﹣1|.
(1)解不等式f(x)>4;
(2)若x∈(﹣∞,﹣ ),不等式a+1<f(x)恒成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案