在正△ABC中,CD為AB邊上的高,E為邊BC的中點(diǎn).若將△ABC沿CD翻折成直二面角A-DC-B,則異面直線AB與DE所成角的余弦值為( 。
A、
2
4
B、
1
2
C、
2
2
D、
3
4
分析:取AC的中點(diǎn)F,連接DF,EF,由三角形的中位線定理,可得EF∥AB,則∠FED即為異面直線AB與DE所成角,解三角形FED即可求出異面直線AB與DE所成角的余弦值.
解答:精英家教網(wǎng)解:取AC的中點(diǎn)F,連接DF,EF,如圖所示:
由已知中,CD為AB邊上的高,E為邊BC的中點(diǎn)
則DE=DF=
1
2
BC,AB=
2
2
BC

又∵E、F分別為BC,AC的中點(diǎn)
∴EF∥AB,且EF=
1
2
AB=
2
4
BC

則∠FED即為異面直線AB與DE所成角,
由余弦定理得:cos∠FED=
2
4

故選A
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是異面直線及其所成的角,其中根據(jù)異面直線夾角的定理,判定出∠FED即為異面直線AB與DE所成角,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正△ABC中,CD為AB邊上的高,E、F分別為邊AC、BC的中點(diǎn),將△ABC沿CD翻折成直二面角A-DC-B(如圖),則異面直2,4,6線BE與DF所成的角為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

在正△ABC中,CD為AB邊上的高,E為邊BC的中點(diǎn).若將△ABC沿CD翻折成直二面角A-DC-B,則異面直線AB與DE所成角的余弦值為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖南省張家界市高三(上)一輪復(fù)習(xí)數(shù)學(xué)專項(xiàng)訓(xùn)練:直線、平面垂直的判定與性質(zhì)(解析版) 題型:選擇題

在正△ABC中,CD為AB邊上的高,E、F分別為邊AC、BC的中點(diǎn),將△ABC沿CD翻折成直二面角A-DC-B(如圖),則異面直2,4,6線BE與DF所成的角為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年云南省曲靖市羅平縣高三(下)復(fù)習(xí)適應(yīng)性檢測(cè)數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

在正△ABC中,CD為AB邊上的高,E為邊BC的中點(diǎn).若將△ABC沿CD翻折成直二面角A-DC-B,則異面直線AB與DE所成角的余弦值為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案