已知直線y=x+1與圓x2+y2=24相交于A、B兩點(diǎn),求弦長|AB|的值.
考點(diǎn):直線與圓的位置關(guān)系
專題:直線與圓
分析:由條件可得圓心坐標(biāo)和半徑,利用點(diǎn)到直線的距離公式求出弦心距,再利用弦長公式求得弦長|AB|的值.
解答: 解:由圓x2+y2=24,可得圓心為(0,0),半徑r=2
6
,
求得弦心距d=
|0-0+1|
1+1
=
2
2
,故弦長|AB|=2
r2-d2
=2
24-
1
2
=
94
點(diǎn)評(píng):本題主要考查直線和圓相交的性質(zhì),點(diǎn)到直線的距離公式,弦長公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
ax2+b
x
,g(x)=2lnx,曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為2x-y-2=0.
(1)求a,b的值;
(2)若當(dāng)x≥1時(shí),g(x)≤mf(x)恒成立,求m的取值范圍;
(3)已知
3
=1.732,試估算ln
4
3
的近似值(精確到0.01).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖為一個(gè)幾何體的三視圖,尺寸如圖所示,則該幾何體的體積為( 。
A、2
3
+
3
π
27
B、3
3
+
4
3
π
27
C、5
3
+
π
6
D、5
3
+
4
3
π
27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直角梯形ABCD,AB⊥AD,CD⊥AD,AB=2AD=2CD=2,沿AC折疊成三棱錐,當(dāng)三棱錐體積最大時(shí),三棱錐外接球的體積為
 
;當(dāng)三棱錐外接球的體積最小時(shí),三棱錐的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知an-an-1=n(n≥2),a1=2,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC三個(gè)內(nèi)角A,B,C所對(duì)邊分別為a,b,c,若
a2+c2-b2
a2+b2-c2
=
c
2a-c
,且a+c=8,則△ABC面積的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x+
3
y
-2=0被圓(x-1)2+y2=1所截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(3π-α)=
2
cos(
2
),
3
cos(-α)=-
2
cos(π+β)
且0<α<π,0<β<π.求α、β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊上有一點(diǎn)P(3,y),且sinα=-
2
3
,求y的值,及cosα,tanα,cotα的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案