17.有兩個(gè)命題:p:四邊形的一組對(duì)邊平行且相等q:四邊形是矩形,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.即不充分也不必要條件

分析 利用平行四邊形與矩形的定義及其關(guān)系即可得出.

解答 解:命題:p:四邊形的一組對(duì)邊平行且相等,可知此四邊形為平行四邊形,q:四邊形是矩形,易知:矩形是平行四邊形.
則p是q的必要不充分條件.
故選:B.

點(diǎn)評(píng) 本題考查了平行四邊形與矩形的定義及其關(guān)系、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知A、B是單位圓O上的兩點(diǎn),$\overrightarrow{CB}$=2$\overrightarrow{AC}$,∠OAB=60°,則$\overrightarrow{OA}$•$\overrightarrow{OC}$=$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖所示的三棱柱ABC-A1B1C1中,過(guò)A1B1的平面與平面ABC交于直線DE,則DE與AB的位置關(guān)系是( 。
A.異面B.平行C.相交D.以上均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知向量$\overrightarrow m=({\sqrt{3}sinx,cosx}),\overrightarrow n=({cosx,cosx}),x∈R$,設(shè)$f(x)=\overrightarrow m•\overrightarrow n$.
(I)求函數(shù)f(x)的解析式及單調(diào)增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為△ABC內(nèi)角A,B,C的對(duì)邊,且a=1,b+c=2,f(A)=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若2a5+3a7+2a9=14,則S13等于(  )
A.26B.28C.52D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.求下列函數(shù)的定義域.
(1)y=$\frac{{\root{3}{4-x}}}{{\sqrt{x+1}}}-{x^0}${x|x>-1x≠0}
(2)y=$\sqrt{{{log}_{\frac{1}{2}}}(3x-2)}${x|$\frac{2}{3}$<x≤1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知直線x+y=a與圓x2+y2=1交于A,B兩點(diǎn),O是原點(diǎn),C是圓上一點(diǎn),若$\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}$,則a的值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.歐陽(yáng)修《賣油翁》中寫到:(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌油瀝之,自錢入孔入,而錢不濕,可見(jiàn)“行行出狀元”,賣油翁的技藝讓人嘆為觀止,若銅錢是直徑為2cm的圓,中間有邊長(zhǎng)為0.5cm的正方形孔,若你隨機(jī)向銅錢上滴一滴油,則油(油滴的大小忽略不計(jì))正好落入孔中的概率為$\frac{1}{4π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)集合M={-1,1},N=$\left\{{x\left|{\frac{1}{x}<2}\right.}\right\}$,則下列結(jié)論正確的是( 。
A.N⊆MB.M⊆NC.M∩N=∅D.M∪N=R

查看答案和解析>>

同步練習(xí)冊(cè)答案