用一張矩形的紙片分別圍成兩個不同的圓柱形紙筒Ⅰ、Ⅱ,紙筒Ⅰ的側(cè)面積為24π,紙筒Ⅱ的底面半徑為3,則紙筒的Ⅱ的容積為______.
根據(jù)紙筒I與紙筒II的側(cè)面積相同,設紙筒II的母線長為L,
∴24π=2π×3×L⇒L=4,
∴紙筒II的容積V=π32×4=36π.
故答案是36π.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)如圖,在梯形中,

平面,且
(1)求異面直線間的距離;
(2)求直線與平面所成的角;
(3)已知是線段上的動點,若二面角
大小為,求AF.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在長方體ABCD-A1B1C1D1中,A1A=AB=2,若棱AB上存在一點P,使得D1P⊥PC,則棱AD的長的取值范圍是( 。
A.[1,
2
]
B.(0,
2
]
C.(0,
2
)
D.(0,1]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

(理科)設四面體的四個面的面積分別為S1,S2,S3,S4,其中它們的最大值為S,則
S1+S2+S3+S4
S
的取值范圍是( 。
A.(1,4]B.(2,4]C.(3,4]D.(3,5]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

用一個平面去截一個幾何體,得到的截面是四邊形,這個幾何體可能是( 。
A.圓錐B.圓柱
C.球體D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,已知四棱柱ABCD-A1B1C1D1中,底面ABCD是邊長為3的正方形,側(cè)棱AA1長為4,且AA1與A1B1,A1D1的夾角都是60°,則AC1的長等于( 。
A.10B.
56
C.
10
D.
34

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知在四面體P-ABC中,對棱相互垂直,則點P在平面ABC上的射影為△ABC的( 。
A.重心B.外心C.垂心D.內(nèi)心

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

三條線段PA=PB=PC,且點P在△ABC的射影在△ABC的外面,則△ABC是( 。
A.等邊三角形B.銳角三角形C.直角三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知某幾何體的三視圖如右圖所示,則該幾何體的體積為(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案