5.已知向量$\overrightarrow a=({1,1,0}),\overrightarrow b=({-1,0,2})$,若$k\overrightarrow a+\overrightarrow b$與$\overrightarrow b$相互垂直,則k的值是5.

分析 利用向量垂直,數(shù)量積為0,得到關(guān)于k的方程解之.

解答 解:由已知$k\overrightarrow a+\overrightarrow b$與$\overrightarrow b$相互垂直,所以($k\overrightarrow a+\overrightarrow b$)•$\overrightarrow b$=0,所以-(k-1)+k×0+2×2=0,解得k=5.
故答案為:5.

點評 本題考查了空間向量垂直的性質(zhì),運用了方程思想.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,點P在雙曲線的右支上,且|PF1|=λ|PF2|(λ>1),$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,雙曲線的離心率為$\sqrt{2}$,則λ=( 。
A.$\sqrt{2}$B.$2+\sqrt{3}$C.$2+\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若等差數(shù)列{an}的前n項和為Sn,且S8-S5=6,則S13的值為26.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,半圓O的半徑為1,A為直徑延長線上一點,OA=2,B為半圓上任意一點,以AB為一邊做等邊三角形ABC,設(shè)∠AOB=θ.
(1)當$θ=\frac{π}{3}$時,求四邊形OACB的面積;
(2)求線段OC長度的最大值,并指出此時θ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且滿足2Sn2-(3n2+3n-2)Sn-3(n2+n)=0(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{{a}_{n}}{{3}^{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知向量$\overrightarrow{a}$=(3,4),$\overrightarrow$=(-1,2).
(1)求向量$\overrightarrow{a}$與$\overrightarrow$夾角的余弦值;
(2)若向量$\overrightarrow{a}$-λ$\overrightarrow$與$\overrightarrow{a}$+2$\overrightarrow$平行,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知一組數(shù)據(jù):10.1,9.8,10,x,10.2的平均數(shù)為10,則該組數(shù)據(jù)的方差為0.02.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.集合A={x∈Z|x≥10},集合B是集合A的子集,且B中的元素滿足:
①任意一個元素的各數(shù)位上的數(shù)字互不相同;
②任意一個元素的任意兩個數(shù)位的數(shù)字之和不等于9.問
(1)集合B中兩位數(shù)和三位數(shù)各有多少個?
(2)集合B中是否有五位數(shù)?是否有六位數(shù)?
(3)將集合B中的元素從小到大排列,求第1081個元素.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.甲、乙兩支排球隊進行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結(jié)束.除第五局甲隊獲勝的概率是$\frac{1}{2}$外,其余每局比賽甲隊獲勝的概率都是$\frac{2}{3}$.假設(shè)各局比賽結(jié)果相互獨立.則甲隊以3:2獲得比賽勝利的概率為( 。
A.$\frac{2}{81}$B.$\frac{4}{27}$C.$\frac{8}{27}$D.$\frac{16}{81}$

查看答案和解析>>

同步練習冊答案