△ABC中,sin2A≤sin2B+sin2C-sinBsinC,則A的取值范圍為
(0,60°]
(0,60°]
分析:利用正弦定理化簡已知的不等式,再利用余弦定理表示出cosA,將得出的不等式變形后代入表示出的cosA中,得出cosA的范圍,由A為三角形的內(nèi)角,根據(jù)余弦函數(shù)的圖象與性質(zhì)即可求出A的取值范圍.
解答:解:利用正弦定理化簡sin2A≤sin2B+sin2C-sinBsinC得:a2≤b2+c2-bc,
變形得:b2+c2-a2≥bc,
∴cosA=
b2+c2-a2
2bc
bc
2bc
=
1
2
,
又A為三角形的內(nèi)角,
則A的取值范圍是(0,60°].
故答案為:(0,60°]
點評:此題考查了正弦、余弦定理,特殊角的三角函數(shù)值,以及余弦函數(shù)的圖象與性質(zhì),熟練掌握正弦、余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•邯鄲二模)在△ABC中,sin2(A+B)=sin2A+sin2B,則A+B=
π
2
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,sin2(A+C)=sinAsinC,cosB=
3
4
BA
BC
=
3
2
,求a+c 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆陜西省渭南市高二上學(xué)期期中考試數(shù)學(xué)試卷 題型:選擇題

已知△ABC中,sin2 A=sin2 B+sin2 C,bsin B-csin C=0,則△ABC為(  )

A.直角三角形                            B.等腰三角形

C.等腰直角三角形  D.等邊三角形

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

△ABC中,sin2(A+C)=sinAsinC,cosB=數(shù)學(xué)公式數(shù)學(xué)公式=數(shù)學(xué)公式,求a+c 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省舟山市嵊泗中學(xué)高一(下)第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

在△ABC中,sin2=(a、b、c分別為角A、B、C的對應(yīng)邊),則△ABC的形狀為( )
A.正三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形

查看答案和解析>>

同步練習(xí)冊答案